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ABSTRACT

This study aimed to elucidate the importance of plant hormones regulating plant growth, especially auxin (indoleacetic
acid). The study showed that this hormone is produced by both plants and microorganisms such as bacteria and fungi
through different metabolic pathways, yet they produce the same auxin. The amino acid tryptophan is a primary source in
the biosynthesis of indoleacetic acid. Research has shown the role and effectiveness of auxin in plants, as well as its role
in the interactions between plants and pathogens, and its effect on pathogens varies positively or negatively. It is important
in the symbiotic relationships between root nodule bacteria and plants and mycorrhizae and plants that promote plant
growth and increase its resistance to pathogens. Additionally, auxin influences the growth and pathogenicity of plant
pathogenic fungi and increases the pathogenicity of fungal pathogens.
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INTRODUCTION

Plant hormones are organic chemical substances that regulate plant physiological processes and have significant effects
in small quantities. They play important roles in cell elongation in leaves, stems, and roots, as well as in cell differentiation,
division, germination, dormancy, leaf and fruit abscission [1; 2; 3]. Growth regulators work by stimulating the synthesis of
messenger RNA molecules, leading to the formation of specialized enzymes that regulate plant physiology. Plant hormones
are divided into auxins, gibberellins, cytokinins, abscisic acid, and ethylene gas, which can be distinguished by their chemical
structure and biological activity. Additionally, many other hormone-like compounds have been discovered, such as
brassinosteroids, jasmonate, salicylic acid, nitric oxide, and strigolactones [4; 5]. Hormones are present in plant tissues,
where more than one hormone may be found in a single tissue. Hormones are characterized by their action within the same
cell or by their ability to move to another location and exert their effects there. They are naturally occurring, but when
synthesized chemically, they are called growth regulators [6]. The effects of hormones differ; auxins and gibberellins, for
example, promote stem elongation [7; 8], but their mechanisms of action vary. On the other hand, abscisic acid and ethylene
inhibit stem growth, dividing them into two groups: growth promoters, which stimulate plant growth, such as auxins,
gibberellins, and cytokinins [9]. The second group consists of growth inhibitors represented by abscisic acid and ethylene
[10; 5]. Hormones cannot be judged as stimulatory or inhibitory without considering the concentration used; they become
growth inhibitors when used at high concentrations. Additionally, different plant organs vary in their response to the same
hormone depending on the plant's growth stages and plant species. Hormones may have cumulative, cooperative, or
antagonistic effects, depending on their individual impacts. Therefore, plant growth and development result from the
combined effects of various hormones present in the plant. Furthermore, these hormones can be utilized as natural
antimicrobial agents, thereby reducing the environmental impact of pesticides and promoting the development of resistant
individuals [11]. Hormones are present in angiosperms, gymnosperms, ferns, bacteria, algae, and fungi [12; 13; 14], and
they are also produced by beneficial microorganisms inhabiting the rhizosphere, similar to those produced by plants [15].
Auxins (Indoleacetic Acid)

Auxins were the first plant hormones to be discovered and studied, and they play a significant role in most quantitative
growth changes that occur throughout the plant's life cycle [16]. They also stimulate plant defence mechanisms against
environmental stresses by affecting rhizosphere interactions, root thickness, and number, increasing plant nutrient and
mineral uptake, and promoting plant growth [17; 18]. The credit for the discovery of the first auxin, Indol-3-acetic acid
(IAA), in oat plants goes to the American Scientist Went in 1926[19]. It was found that the apex of the coleoptile secretes
auxin, which leads to its elongation. It is believed to move dynamically from areas of high concentration, such as the shoot
apex, to areas of low concentration or those completely devoid. This movement starts from the shoot apical meristem and
ends at the lower base of the root system in upright plants. In horizontal or prostrate plants, auxins move from the upper side
of the stem and root to their lower side, causing the plants to bend as they elongate and grow.
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Many molecules similar to auxin have been discovered in plants, including 4-chloroindole-3-acetic acid, indole-3-butyric
acid, and phenylacetic acid, as well as synthetic compounds like dichlorophenoxyacetic acid and naphthalene-1-acetic acid,
which exhibit biological activity similar to auxin [20].

The word "auxin" is derived from the Greek word meaning "growth™ [21]. Auxin plays a crucial role in plant physiology,
contributing to cell division, elongation, differentiation, fruit development, and phototropic responses [22]. Additionally, it
plays an important role in stimulating plant defences against environmental stresses by influencing tryptophan metabolism,
root thickness and number, increasing plant nutrient and mineral uptake, and promoting plant growth [23; 24]. Levels of
auxin are often high in many diseased plants, despite some pathogens reducing auxin levels in the host. This is because
certain pathogens have the capability to produce auxin themselves, such as the fungus Plasmodiophora brassica, Fusarium
oxysporium, and Phytophthora infestans. In some diseases, like black stem rust, auxin levels are elevated due to reduced
breakdown of auxin caused by inhibition of auxin oxidase enzyme responsible for auxin degradation. Increased levels of
auxin lead to increased elasticity of cell walls, thereby facilitating the breakdown of pectin, cellulose, and proteinaceous cell
wall components by enzymes secreted by the pathogens.

Chemical Structure Of Indole Acetic Acid
Indole-3-acetic acid (IAA) has a chemical structure composed of a carboxylic acid group attached to a benzene ring at
the C-3 position of the indole ring. It is a colourless solid substance that is soluble in polar organic solvents.
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Auxin can be produced through multiple pathways. According to the following pathways, the amino acid
tryptophan serves as a primary source in the biosynthesis of indole-3-acetic acid (IAA), which is produced through a series
of reactions in the tryptophan-dependent pathway. In this pathway, tryptophan is first converted to indole pyruvic acid, and
then to indole-3-acetaldehyde, which further oxidizes to IAA. Alternatively, tryptophan can be converted to tryptamine,
which is then transformed into indole-3-acetaldehyde, which oxidizes to IAA [25]. Many pathways have been described [26;
27].

In the IAN pathway, the amino acid tryptophan is directly converted to Indole-3-acetaldoxime (IAOX). This compound
then undergoes the formation of Indole-3-acetonitrile (IAN) through enzymatic action, facilitated by nitrilases.
Subsequently, IAN is converted to Indole-3-acetic acid (IAA).

In the TAM pathway, the process begins with the removal of a carbon atom through decarboxylation from tryptophan,
forming the compound Tryptamine (TAM). TAM then undergoes a series of enzymatic reactions to form Indole-3-
acetaldehyde (IAAID). Subsequently, IAAID is oxidized by the enzyme dehydrogenase to form auxin (1IAA).

In the IPA pathway, amino groups are extracted from the amino acid tryptophan, resulting in the formation of Indole-3-
Pyruvate (IPA). A carbon atom is then removed from IPA to form Indole-3-acetaldehyde (IAAID). IAAID is subsequently
transformed into auxin (IAA) by the enzyme Aldehyde oxidase.

In the IAM pathway, the amino acid tryptophan is utilized to produce the intermediate compound Indole-3-acetamide
(IAM) through the enzymes Trp.monooxygenase and xAM hydrase. The auxin produced from bacteria typically induces
morphological changes in the host plant.

Bacteria such as Bacillus sp., Pseudomonas sp., Azospirillum sp., Enterobacter sp., and Serratia sp. are known to
produce auxin. This auxin is synthesized from tryptophan, which is converted to indole-3-acetamide by the enzyme
tryptophan-2-monooxygenase. Indole-3-acetamide then undergoes hydrolysis in water to form auxin, similar to plant-
produced auxin but through slightly different biosynthetic pathways. These pathways include indole-3-pyruvic acid, indole-
3-acetamide, and indole-3-acetonitrile.  Additionally, auxin can be synthesized independently of tryptophan. Auxin is
synthesized in apical tissues of aerial parts such as young leaves and terminal buds, as well as in the growing tips of roots of
certain plant species, fruits, and seeds. In fungi like Fusarium sp., Colletotrichum gloeosporioides, Ustilago, and
Rhizoctonia, auxin production occurs as well [28; 29]. The production of auxin is influenced by environmental factors such
as pH, temperature, osmolarity, and carbon availability <demonstrated that water-soluble vitamins at low levels affected the
production of indole-3-acetic acid by bacteria, indicating that carbon and nitrogen sources are important factors for the
production of fungal and bacterial indole-3-acetic acid. [30] mentioned that the optimal production of indole-3-acetic acid
from fungi occurs at 28°C.
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The role and importance of auxins for plants include:
Increasing water absorption rate.
Enhancing respiration rate.
Playing a role in protein and nucleic acid synthesis.
Directing the movement of nutrients.
Influencing cell division.
Stimulating cell elongation and expansion.
Promoting the formation of lateral and adventitious roots.
Affecting membrane permeability.
Inducing positive phototropism in shoot tips and positive geotropism in roots.
10 Playing a role in apical dominance phenomenon
Auxin Transport Through Plants

The auxin movement within plants is polar, moving from the base to the tip in stems and from the tip to the base in roots.
This polar movement of auxin is known as basipetal transport in the stem and acropetal transport in the root. Auxin transport
occurs from regions of high concentration to regions of lower concentration, primarily through the parenchyma cells adjacent
to the vascular bundles. The process relies on energy generated from metabolic activities and the oxygen concentration in
tissues. It has been observed that the process increases with higher oxygen concentration. Additionally, the efficiency of
auxin transport is influenced by the age of plant tissue.
The role of auxins in interactions between plants and pathogens
Many interacting and non-interacting fungal species produce volatile compounds, iron carriers, and hormones (Figure 4)
that affect plant growth in different forms [33].
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Figure 4. Effect of hormor{és"o'ﬁ fungi [34]

Auxins can have both positive and negative effects on plant growth, and they can either increase or decrease susceptibility
to pathogenic organisms. Auxins play a crucial role in activating plant defense responses, which is evident when plants are
infected by fungi such as Botrytis, Rhizoctoina, and Alternaria. Auxins levels typically rise upon infection, and external
application of Auxins has been shown to reduce disease incidence [35]. [36] demonstrated that
auxin reduces the germination of Fusarium oxysporum lycopersici, the causal agent of Fusarium wilt in tomatoes. [37]
reported that auxin production leads to morphological changes and fungal hyphal growth in Saccharomyces cerevisiae and
Candida albicans. [38] found that low concentrations of auxin increased the growth of F. delphinoides, which affects
chickpeas, while high concentrations decreased growth. Therefore, the effects of auxin on fungal physiology vary depending
on the fungal species and auxin concentration.

[39] clarified that auxin stimulates tumor formation on plants when infected with bacteria such as Agrobacterium
tumefaciens and Pseudomonas savastanoi, and auxin increases their severity. Auxin plays a role in the relationship between
nitrogen-fixing bacteria and plants, encouraging nodule formation [40] and increasing root length, number of root hairs, and
lateral roots, thereby enhancing nutrient uptake [41]. [32] demonstrated that rhizobacteria synthesize indole acetic acid to
promote plant growth, as an increase in tryptophan secretion by plant roots was observed in the presence of bacteria,
stimulating auxin production [42]. Additionally, auxin is important for mycorrhizae [43]. [44] demonstrated that the fungus
Penicillium sp., which produces indole acetic acid, enhanced sesame plant growth and suppressed Fusarium sp. infection.
[45] reported that the fungus Trichoderma, producing indole acetic acid, reduced Ralstonia solanacearum infection in tomato
plants. [46] mentioned that inoculating Zea mays plants with the fungus Candida tropicalis led to an 85% improvement in
grain quality compared to the control treatment. Additionally, there was a 40% and 24% increase in root and shoot lengths,
respectively, in wheat seedlings treated with Mortiella species producing indole acetic acid [47]. [48] and [49] stated that
auxin enhances the ability of the fungus Hebeloma cylindrosporum to invade the root tissues of Pinus pinaster plants.
Furthermore, auxin levels accumulate upon plant infection with Fusarium, as it stimulates genes to produce auxin, thereby
increasing the severity of the fungus [50]. [51] elucidated that the fungus Colletotrichium gloeosporioides f.sp. aeshynomene
produces auxin during early stages of plant colonization. [37] demonstrated that indole acetic acid promotes the growth of
fungal hyphae in Candida albicans and S. cerevisiae, thereby increasing their virulence. These findings indicate that auxin
plays a significant role in fungal diseases affecting plants and the pathogenicity of causal agents [52]. [53] demonstrated the
ability of the fungus Aspergillus awamori to colonize maize seedling roots compared to the control treatment, resulting in
improvements in seedling metrics attributed to increased production of indole acetic acid. [54] further clarified that inhibiting
the synthesis of indole acetic acid reduced Fusarium oxysporum colonization of maize roots by 46% to 62% in successive
applications on leaves and roots. Conversely, an increase in indole acetic acid synthesis enhanced Fusarium colonization of
seedlings, leading to increased growth metrics such as root and stem length, fresh and dry weight, and chlorophyll content.
[14] Noted an increase in protein content upon application of indole acetic acid secreted by Pleurotus fungus, ranging from
10.62 to 13.17 mg/g compared to the control treatment, which was 9.24 mg/g, along with increases in root and stem length,
as well as fresh and dry weight of wheat plants.

[21] described the mechanisms by which ethylene increases fungal pathogenicity through the hormone indole acetic
acid produced by the former. The first mechanism involves indole acetic acid inhibiting the defense signals dependent on
salicylic acid, which affects the cell wall and stomata. The second mechanism entails indole acetic acid stimulating internal
production of indole acetic acid in plants, enhancing the detrimental effects of fungi that produce indole acetic acid. Plants
and fungi can communicate through signals of indole acetic acid, with concentrations of this hormone regulating the
relationship between fungi, either stimulating or inhibiting it. Different fungi have optimal thresholds for levels of indole
acetic acid affected by varying conditions, making it an important factor in fungal competition.
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