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ABSTRACT 

     Monitoring and predicting river water quality is crucial for urban water management, agriculture, and environmental 

sustainability, especially in hot and arid regions. The presence of dams along the river course can significantly alter water 

quality by affecting flow regimes and salt accumulation, potentially leading to increased salinity and other related 

problems. However, such changes can be effectively managed through accurate modeling and forecasting. This study 

assesses the performance of two machine learning models, Random Forest (RF) and Long Short-Term Memory (LSTM), 

in predicting electrical conductivity (EC) and sodium absorption ratio (SAR) within the Maroon River Basin, Iran. 

Principal Component Analysis (PCA) and stepwise regression were employed to reduce input dimensionality and enhance 

model efficiency. Results indicate that the LSTM model consistently outperforms RF at both Idank station (upstream of 

Maroon Dam) and Tang-e-Tekab station (downstream of Maroon Dam) for both parameters, particularly in SAR 

prediction. At Idank station, the LSTM model combined with stepwise regression achieved the highest accuracy for EC 

prediction, with an R² of 0.96, RMSE of 61.56, and KGE of 0.96 on the test dataset. For SAR at the same station, LSTM 

again demonstrated exceptional performance, attaining an R² of 0.99, RMSE of 0.08, and KGE of 0.99. At Tang-e-Tekab 

station, LSTM with PCA yielded the most precise EC predictions (R² = 0.96, RMSE = 76.60, KGE = 0.97). Similarly, the 

best SAR predictions at this station were obtained using LSTM with PCA (R² = 0.96, RMSE = 0.18, KGE = 0.95). These 

findings underscore the effectiveness of combining LSTM networks with tailored input selection techniques based on site-

specific conditions, highlighting their potential application in water resource decision support systems. Overall, this study 

demonstrates that although dam operations influence water quality, such impacts can be successfully managed through 

advanced predictive modeling to facilitate sustainable water resources management. 
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Introduction 

     Rivers are among the most vital sources of freshwater for both natural ecosystems and human societies. They play a critical 

role not only in supplying water for agricultural, industrial, and urban uses but also in maintaining ecological balance and 

ecosystem sustainability. However, increasing population growth and the expansion of anthropogenic activities have 

significantly impacted river water quality. Agricultural runoff, urban and industrial wastewater discharge, and land-use 

changes are among the significant contributing factors. These processes can lead to increased salinity and alterations in the 

ionic composition of river water, which may adversely affect human health, agricultural productivity, and environmental 

integrity [1]. 

Effective water resource management requires a comprehensive understanding of water quality variations and the ability to 

forecast future trends. In this regard, modeling water quality parameters such as Electrical Conductivity (EC) and Sodium 

absorption ratio (SAR) is of particular importance. These parameters are recognized as key indicators for assessing salinity 

and overall water quality. Fluctuations in EC and SAR values can signal the intrusion of pollutants or changes in water 

sources. For instance, elevated levels of EC and SAR may indicate the presence of dissolved salts in the river, often due to 

agricultural runoff or industrial effluents [2]. 

https://kujas.uokirkuk.edu.iq/
https://doi.org.10.58928/ku25.16129
https://orcid.org/my-orcid?orcid=0009-0009-3415-8440
https://orcid.org/my-orcid?orcid=0009-0007-7434-5553
https://orcid.org/my-orcid?orcid=0009-0003-9006-9676
https://orcid.org/0000-0002-9777-7697


153 

 

Numerous studies have shown that modeling EC based on the analysis of central cation and anion concentrations can 

contribute to understanding the chemical behavior of river systems and evaluating the influence of pollution sources. By 

examining the relationships between dissolved ions such as sodium (Na⁺ ), chloride (Cl⁻ ), and other salinity-related 

constituents, it is possible to assess their impact on key water quality parameters like EC and SAR [3]. For example, during 

the planning and siting of new industrial units, predictive models can be used to estimate potential pollutant loads to rivers. 

In such cases, data-driven models for estimating EC and SAR enable decision-makers to anticipate the consequences of human 

developments on water salinity and to implement timely management strategies [4]. 
The importance of this issue is especially pronounced in agricultural areas such as the Maroon River Basin, where the 

production of strategic crops like wheat, sugarcane, rice, and dates is affected by water quality. Increased salinity not only 

reduces crop yield and harms salt-sensitive plants but may also lead to the collapse of local ecosystems. 

In this context, modeling water quality parameters under future urban, industrial, and agricultural development scenarios 

serves as an effective tool for predicting environmental changes without requiring frequent field measurements. Such 

modeling can function as a decision support system for water resource management and aid in the development of sustainable 

policies. 

Data mining and artificial intelligence techniques provide powerful tools for predicting and managing water quality 

parameters. The Random Forest (RF) model, as one of the machine learning algorithms, has demonstrated strong performance 

in handling complex and nonlinear datasets and has been widely applied to predict water quality parameters [5,6]. 

Additionally, the Long Short-Term Memory (LSTM) neural network, due to its memory-based architecture, has shown high 

effectiveness in modeling time series and forecasting temporally dependent variables. In recent years, LSTM has been 

extensively used for predicting water quality parameters such as EC, dissolved oxygen (DO), and biochemical oxygen demand 

(BOD) [7]. 

Given the significance of this issue, several studies have been conducted to address it. 

For instance, Adib et al. (2020) estimated total dissolved solids (TDS), electrical conductivity (EC), and total hardness (TH) 

in the Sepidrood River using ANFIS, Gene Expression Programming (GEP), and Least-Squares Support Vector Machine 

(LS-SVM) models. Their findings revealed that LS-SVM yielded the highest accuracy for TDS, GEP for EC, and ANFIS for 

TH, underlining the power of intelligent systems for water quality forecasting [3]. 

Ubah et al. (2021) applied Artificial Neural Networks (ANNs) to forecast major irrigation-related parameters (pH, TDS, EC, 

and Na⁺ ) in the Ele River. The models achieved high accuracy (R² > 0.95), capturing seasonal dynamics and indicating 

exceedance of FAO thresholds during dry seasons. The study confirmed ANN's effectiveness in water quality management 

[8]. 

Nouraki et al. (2021) employed Multiple Linear Regression (MLR), M5P, Support Vector Regression (SVR), and Random 

Forest Regression (RFR) to model TDS, SAR, and TH in the Karun River (1999–2019), using PCA for input variable 

selection. The best performance was observed with RFR (TDS), SVR (SAR), and MLR (TH), demonstrating ML capabilities 

under limited data conditions [9]. 

Trach et al. (2022) assessed and forecasted the Water Quality Index (WQI) in Ukrainian rivers using fuzzy logic and ANN 

models. A modified WQI framework emphasized hazardous chemicals, with the optimal ANN (Softmax activation and Adam 

optimizer) achieving R² = 0.964 and MAPE = 9.6%, confirming its predictive power [10]. 

Adib et al. (2022) compared MLP, RBF, ANFIS, LS-SVM, and GEP for estimating water quality at Pol-e-Astaneh station. 

LS-SVM, MLP, and GEP achieved the best accuracy for various parameters. Notably, models incorporating lag time 

underperformed, suggesting immediate input features are more informative [11]. 

Ibrahim et al. (2023) integrated PCA and ANN to model water quality in Malaysia. PCA effectively identified pollution 

sources, while ANN achieved near-perfect prediction of WQI (R² = 0.9999), supporting the use of hybrid models for 

environmental decision-making [12]. 
Adjovu et al. (2023) estimated TDS concentration in Lake Mead using EC and temperature through various machine learning 

models. They found that both simple models, such as linear regression, and advanced ensemble methods, like XGBoost and 

GBM, achieved high prediction accuracy. The study demonstrated the effectiveness of using surrogate variables and data-

driven approaches for water quality monitoring [13]. 
Pourhosseini et al. (2023) developed hybrid SVM models optimized with metaheuristic algorithms (CA, HS, TLBO) to predict 

TDS in the Babolrood River, Iran. Using long-term monthly water quality data and input selection via Shannon’s entropy and 

correlation analysis, the SVM-TLBO model achieved superior accuracy compared to baseline models, demonstrating its 

effectiveness in predicting TDS in river systems [14]. 

Pyo et al. (2023) reviewed the application of LSTM models for predicting water quality in inland environments. They 

highlighted LSTM's strengths in capturing temporal dependencies and discussed enhanced versions of LSTM using 

preprocessing, CNNs, attention mechanisms, and transfer learning. Their review confirms LSTM's robustness and adaptability 

for time-series water quality modelling [15]. 

Karbasi et al. (2024) applied a hybrid CNN-LSTM deep learning model, enhanced with Boruta-XGBoost feature selection, 

to forecast river EC up to 10 days ahead. Using data from two Australian rivers, the model outperformed other machine 
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learning methods in both short- and medium-term predictions. Their results highlight the strong potential of deep learning 

and feature selection techniques for accurate EC forecasting in river systems [16]. 

Jaafer and Al-Mukhtar (2024) used ensemble learning (AdaBoost and Gradient Boosting) to predict DO and BOD in the 

Tigris River. Gradient Boosting achieved R² > 0.99, highlighting ensemble models' superior predictive capacity [17]. 

Ismail et al. (2024) developed ANN architectures (feedforward and radial basis networks) to estimate WQI in the Klang River. 

The best model feedforward ANN with a single hidden layer offered fast, cost-effective, and reliable prediction, serving as 

an early warning tool for pollution [18]. 

Satish et al. (2024) created a stacked ANN ensemble using geospatial, climatic, and land use data to forecast EC, BOD, nitrate, 

and DO in the Godavari River Basin. Ensemble methods (Bagging, Boosting) outperformed baseline FFNN models, and the 

stacked meta-model (XGBoost, RF, ET) achieved improved accuracy (e.g., BOD R² from 0.87 to 0.91) [19]. 

Adnan et al. (2025) proposed a hybrid ANN–Enhanced Runge Kutta (ANN-ERUN) model to predict BOD₅  in South Korea. 

The model achieved R² = 0.857 and RMSE = 1.24 mg/L using eight parameters. It outperformed traditional models and 

showed promise for water quality monitoring [20]. 

Khosravi et al. (2025) introduced a hybrid Bi-LSTM + BA-AMT model to forecast turbidity and DO in the Clackamas River. 

Bi-LSTM outperformed other methods, especially for turbidity, while BA-AMT effectively captured extreme events. The 

study emphasized the robustness of deep learning and metaheuristic optimization [21]. 

Abushandi (2025) applied ANN models to predict water quality in the Liffey (Ireland) and Andarax (Spain) rivers. The models 

achieved high performance (e.g., R² = 0.98 for EC), capturing complex spatiotemporal patterns and projecting notable trends, 

including a 20% drop in DO in the Liffey [22]. 

Al-Khuzaie et al. (2025) developed a GIS-integrated ANN model to predict the Heavy Metal Pollution Index (HPI) in Iraq's 

Euphrates River using data from 40 monitoring sites. The model attained excellent validation metrics (R² = 0.999, RSR = 1, 

NSE = 0.99), identifying major pollutants such as nickel and cadmium, which exceeded WHO standards [23]. 

Finally, Isık and Akkan (2025) modeled WQI in the Southeastern Black Sea Basin using novel ANN models Single 

Multiplicative Neuron (SMN), Multilayer Perceptron (MLP), and Pi-Sigma ANN (PS-ANN). Based on monthly data from 

eight sites, the PS-ANN and SMN models introduced showed high accuracy and ability to capture complex nonlinear 

dynamics [24]. 
Although numerous studies have applied machine learning techniques to predict water quality, most have either focused on a 

limited set of models or targeted specific parameters under generic conditions. Furthermore, few of them have systematically 

categorized the modelling approaches based on prediction targets (e.g., EC, SAR), input selection strategies (e.g., PCA, 

feature ranking), or spatial scenarios (e.g., upstream vs. downstream monitoring). A critical synthesis highlighting 

methodological gaps and model suitability under varying riverine conditions is often lacking. This study addresses these gaps 

by combining dimensionality reduction techniques with state-of-the-art models (RF and LSTM), while explicitly accounting 

for spatial variability in water quality across different monitoring stations in the Maroon River Basin. 

Moreover, predictive modelling plays a crucial role when real-time observational data are unavailable due to equipment 

malfunction, monitoring interruptions, or communication failures. By learning from historical patterns and upstream data, 

reliable models can serve as effective surrogates for estimating downstream water quality parameters under such conditions. 

Additionally, forecasting capabilities provide early warnings for salinity risks, which is particularly valuable during sensitive 

agricultural periods. These practical considerations underscore the need for robust predictive tools, even when observational 

data are available for both intake and out-take stations. 

 

Materials and Methods 

Study Area 

The Maroon River watershed, a sub-basin of the Maroon–Jarrahi river system, is located in southwestern Iran. It lies between 

longitudes 50°05′ to 51°11′ E and latitudes 30°39′ to 31°21′ N. The river originates in the Zagros Mountains and flows 

approximately 120 km before entering the Maroon Dam reservoir. With a total length of about 422 km, the Maroon River is 

a vital water resource for Khuzestan Province, particularly in supplying irrigation water to southeastern agricultural lands. 

This river is a perennial stream with a mixed hydrological regime driven by both rainfall and snowmelt. Most precipitation 

occurs as rainfall at lower elevations, while snowfall is dominant at higher altitudes. Annual precipitation in the basin varies 

significantly, ranging from about 150 mm in the plains to over 900 mm in the northern highlands. The total watershed area is 

approximately 3,824 km², with elevations spanning from 240 meters at the lowest point to 3,485 meters in the mountainous 

areas [25]. Figure 1 shows the major rivers of the Maroon watershed, the locations of two hydrometric stations (Idanak and 

Tang-e-Tekab), and the Maroon Dam. 

According to regional environmental reports, extensive sand and gravel extraction has led to severe ecological disturbances 

in the riverbed. Additionally, wastewater discharge from 15 industrial and service facilities, along with domestic sewage from 

urban and rural settlements, has exacerbated water quality degradation. Particularly in the downstream section between the 

Idanak station and the Beheshtan plain, the river flows through gypsum- and salt-rich geological formations. Combined with 

intense evaporation caused by high regional temperatures, these conditions significantly elevate the salinity and mineral 

content of the river water [26]. 
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Figure 1: Maroon watershed and locations of stations and dam 

Data and Preprocessing 
This study focuses on modelling two critical water quality parameters, Electrical Conductivity (EC) and Sodium Adsorption 

Ratio (SAR), due to their importance in assessing water suitability for agriculture and environmental management. The dataset 

spans 21 years (1999–2019) and was collected monthly from two hydrometric stations, Idanak and Tang-e-Tekab, located 

within the Maroon River watershed. Parameters measured include discharge, temperature, TDS, EC, pH, SO₄ ²⁻ , HCO₃ ⁻ , 

Cl⁻ , Ca²⁺ , Mg²⁺ , Na⁺ , K⁺ , and SAR. 

To enhance model efficiency and prevent overfitting, dimensionality reduction techniques were applied to eliminate 

multicollinearity and remove redundant or weakly correlated variables. Two methods—Stepwise Regression and Principal 

Component Analysis (PCA) were used to identify the most informative predictors for each target parameter. 

Stepwise Regression 

Stepwise Regression is a statistical method that iteratively adds or removes variables based on criteria such as the F-test and 

the coefficient of determination (R²), resulting in a subset of predictors with the most significant influence on water quality 

parameters. This approach is particularly valuable in environmental modeling due to its transparency in variable selection and 

its direct interpretability [27]. 

Principal Component Analysis (PCA) 

PCA is a widely used technique for dimensionality reduction, which transforms the original set of correlated variables into a 

new set of uncorrelated variables (principal components) that retain the most variance in the data. Components with low 

variance are deemed negligible, allowing for a compact representation of the dataset without significant information loss. 

PCA helps eliminate multicollinearity and reduce noise, thereby enhancing model performance [27]. 

The selected features from both methods were subsequently used to train machine learning models for predicting water quality 

parameters. This approach provides a unified modeling framework to compare the effectiveness of the two-dimensionality 

reduction techniques. 

Random Forest (RF) 

The Random Forest algorithm was introduced by Breiman in 2001 as an ensemble learning method designed for regression 

and classification problems based on the development of decision trees. A random forest is composed of an ensemble of 

unpruned decision trees, each generated through a recursive partitioning algorithm. In other words, the random forest 

combines multiple decision trees, each constructed from different self-organizing random samples of the data [28]. 

To build a regression tree, recursive partitioning, and multiple regression techniques are employed. The decision process at 

each internal node, starting from the root node, is repeated according to a tree-based rule until a predefined stopping criterion 

is met. 

In the RF method, a random vector Xn, independent of the random vectors X1, X2,..., Xn-1 is generated for the nth tree. All 

vectors follow the same distribution. The tree regression is computed using the training dataset and Xn, resulting in a set of n 

trees defined as follows [28]: 

(1) 𝑋𝑛 = {ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑛(𝑥)} 
(2) ℎ𝑛 = ℎ(𝑥, 𝑋𝑛), 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑝} 

The above p dimensional vector forms a forest, and the outputs for each tree are presented as follows: 

(3) 𝑦1̂ = ℎ1(𝑥), 𝑦2̂ = ℎ2(𝑥), … , 𝑦𝑛̂ = ℎ𝑛(𝑥) 
In the above equation, 𝑦𝑛̂ represents the output of the nth tree. To obtain the final output, the average of all the tree predictions 

is calculated. 

Long Short-Term Memory (LSTM) 
Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural Network (RNN) designed to capture 

long-term dependencies in sequential data [29] effectively. Introduced by Hochreiter and Schmidhuber [30], LSTMs have 

demonstrated outstanding performance across various applications and are now widely regarded as a standard model for time-

series prediction tasks. 

Traditional RNNs often face challenges such as vanishing or exploding gradients during training, limiting their ability to learn 

long-range dependencies. LSTM overcomes these issues by incorporating a memory cell capable of preserving information 
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over extended sequences. This feature makes LSTM particularly suitable for modeling time-series data with long lags and 

complex temporal dynamics. 

The key component of the LSTM architecture is its gated mechanism, which controls the flow of information within the 

network. It consists of three main gates: 

 Forget gate: decides which parts of the previous memory to discard; 

 Input gate: controls how much new information should be added to the memory cell; 

 Output gate: determines how much of the current memory state is passed to the next layer or time step. 

These gates enable the network to selectively retain important information and discard irrelevant data over time, thereby 

enhancing learning efficiency and prediction accuracy. The internal operations of these gates and the update rules for the 

memory cell are mathematically described by Equations (4) to (8): 

Input gate: 𝑖𝑡 = 𝜎(𝑊𝑙 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑙) (4) 

Forget gate: 𝑓𝑡 = 𝜎 ((𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)),    𝐶𝑡̃ = tanh (𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (5) 

Output gate: 𝑂𝑡 = 𝜎(𝑊𝑂 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂) (6) 

Long memory: 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡̃ (7) 

Short memory: ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (8) 

The matrix W denotes the weight parameters associated with the gates and memory cells in the LSTM architecture. The vector 

X represents the input data at each time step, while h denotes the hidden state, which is responsible for maintaining and 

updating the historical information across sequences. The functions 𝜎 and tanh correspond to the sigmoid and hyperbolic 

tangent activation functions, respectively. Once adequately trained, the LSTM network becomes capable of learning and 

extracting meaningful patterns from complex time-series data. These extracted features, represented by the hidden states, 

encapsulate the temporal dependencies in the input sequences. Based on this hidden information, the final fully connected 

layer of the model transforms the learned representations into accurately predicted outputs [31]. Figure 2 illustrates the general 

structure of the LSTM network. 

 
Modeling Considerations and Evaluation Metrics 
In the modeling process for Electrical Conductivity (EC), the Total Dissolved Solids (TDS) parameter was deliberately 

excluded as an input. This decision stems from the fact that EC can be approximately estimated using TDS through the 

empirical relationship EC ≈ 0.65 × TDS. Therefore, the objective of this study is to develop a model capable of predicting EC 

based solely on other water quality parameters without relying directly on TDS. 

Similarly, for modeling Sodium Adsorption Ratio (SAR), the following equation is commonly used: 

𝑆𝐴𝑅 =
𝑁𝑎+

√𝐶𝑎+2 + 𝑀𝑔+2

2

 
(9) 

If the concentrations of Na⁺ , Ca²⁺ , and Mg²⁺  ions are available for a given period, the Sodium Adsorption Ratio (SAR) can 

be directly calculated using Equation (9). However, in this study, it was assumed that at least one of these three parameters 

might be unavailable. Accordingly,Ca²⁺ , and Mg²⁺   were deliberately excluded from the input structure of the machine-

learning models for SAR prediction. This decision ensures that the models are capable of estimating SAR independently of 

the empirical Equation, thereby enhancing their generalizability and robustness. This consideration was carefully applied to 

avoid the inclusion of derived variables, minimize data redundancy, and reduce the risk of statistical bias, ensuring that the 

models are developed based on realistic and practical assumptions. 

For model training and validation, the dataset was randomly divided into two subsets: 70% for training and 30% for testing. 

To assess model performance, four statistical indicators were employed: the coefficient of determination (R²), root mean 

square error (RMSE), the modified Kling-Gupta Efficiency (KGE), and the RSR index. These indicators are further explained 

in the following section. 

Among these metrics, KGE holds particular importance. Unlike traditional indicators such as R² or RMSE, which evaluate 

limited aspects of performance, KGE simultaneously incorporates three critical components: bias, correlation, and variability 

ratio. In this study, the strong agreement between KGE and other metrics contributed to a more comprehensive and reliable 

evaluation of the overall model performance. 
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(10) 
𝑅2 = 1 −

∑(𝑂𝑖 − 𝑃𝑖)2

∑(𝑂𝑖 − 𝑂̅)2
 

(11) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
× ∑(𝑂𝑖 − 𝑃𝑖)2 

(12) 𝐾𝐺𝐸 = 1 − √(Γ − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 
(13) 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠

=
√1

𝑛
× ∑(𝑂𝑖 − 𝑃𝑖)2

√ 1
𝑛 − 1

× ∑(𝑂𝑖 − 𝑂̅)2

 

Where: 

𝑂𝑖: Observed value 

𝑃𝑖: Predicted value 

𝑂̅: Mean of observed values 

n: Number of observations 

Γ: Pearson correlation coefficient between observed and predicted values 

𝛽 = mean (P) / mean (O): Ratio of predicted to observed means 

𝛾 = CVP / CVO: Ratio of predicted to observed coefficients of variation 

2.6 TOPSIS 
To comprehensively rank the predictive models, the Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS) was applied. This multi-criteria decision-making method evaluates each alternative’s relative proximity to an ideal 

solution based on performance metrics. In this study, four statistical indicators (R², RMSE, KGE, and RSR) were used for 

both training and testing phases, and their weights were calculated using the Shannon entropy method [32]. 

The TOPSIS process involves constructing a decision matrix, normalizing the data, applying weights to each criterion, 

identifying the ideal and anti-ideal solutions, computing the Euclidean distances of each alternative to these ideal points, and 

finally calculating the relative closeness coefficient 𝐶𝑖
∗ for each alternative, defined as: 

  𝐶𝑖
∗ =

𝑆𝑖
−

𝑆𝑖
−+𝑆𝑖

+ (14) 

Where 𝑆𝑖
+ and 𝑆𝑖

− are the distances of the i-th alternative from the positive and negative ideal solutions, respectively. In the 

referenced study, the Shannon entropy method was used to determine the weights of the criteria objectively [32]. 

Figure 3 illustrates the main steps of the research process. 

 
Figure 2: Flowchart of the research steps 

3. Results 
Descriptive statistical analysis for the two hydrometric stations, Idanak and Tang-e-Tekab, as presented in Table 1, reveals 

significant differences in both quantitative and qualitative characteristics of the Maroon River water. At the Idanak station, 

located in the upstream mountainous regions of the basin, the average discharge is 52.05 m3/s with a standard deviation of 

87.40, indicating considerable flow variability driven by seasonal precipitation and snowmelt. In contrast, at the Tang-e-

Tekab station located downstream and influenced by the Maroon Dam the average discharge is lower (37.06 m3/s), and the 

variability is reduced (standard deviation of 48.59), reflecting the regulated water releases from the dam reservoir. 

Salinity-related parameters such as Total Dissolved Solids (TDS) and Electrical Conductivity (EC) are significantly higher at 

Tang-e-Tekab (1359.93 mg/l and 2039.12 µS/cm, respectively) compared to Idanak (637.03 mg/l  and 972.16 µS/cm). This 

increase can be attributed to several factors, including the river’s passage through evaporite formations rich in gypsum and 

salt, industrial and agricultural activities along the riverbanks, and the high rate of evaporation in the lower basin. The southern 
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location and lower elevation of the downstream areas expose them to more intense evaporation, further exacerbated by 

substantial evaporative losses from the surface of the Maroon Dam reservoir, which concentrates the dissolved salts. 

Moreover, higher concentrations of major ions such as Cl⁻ , Na⁺ , Ca²⁺ , and Mg²⁺  at Tang-e-Tekab contribute to an elevated 

Sodium Adsorption Ratio (SAR) at this station (3.75 versus 1.92 at Idanak). These disparities underscore the significant 

influence of geographic location, geological features, and hydro-climatic conditions on water quality. They also highlight the 

importance of continuous spatiotemporal monitoring of water resources for effective water quality management. 

Table 1: Descriptive statistics of Maroon River at two monitoring stations 

Parameter Unit Station Mean Median Std. Deviation Minimum Maximum 

Q m3/s 
Idanak 52.05 23.52 87.40 4.00 756.26 

Tang-e-Tekab 37.06 27.20 48.59 3.06 479.00 

TDS mg/L 
Idanak 637.03 595.50 271.53 275.00 3127.00 

Tang-e-Tekab 1359.93 1373.00 219.51 685.00 1988.00 

EC µS/cm 
Idanak 972.16 913.00 327.11 452.00 2212.00 

Tang-e-Tekab 2039.12 2060.00 350.24 845.00 2942.00 

PH --- 
Idanak 7.70 7.70 0.35 6.70 8.70 

Tang-e-Tekab 7.77 7.80 0.26 7.00 8.60 

SO4 meq/L 
Idanak 3.07 2.90 1.72 0.07 14.30 

Tang-e-Tekab 9.32 9.30 2.11 1.04 18.00 

HCO3 meq/L 
Idanak 3.01 3.06 0.66 0.49 6.03 

Tang-e-Tekab 2.41 2.39 0.51 0.79 4.00 

Cl meq/L 
Idanak 3.72 3.29 2.01 0.58 11.71 

Tang-e-Tekab 9.23 9.13 2.48 2.94 16.13 

Ca meq/L 
Idanak 4.75 4.68 1.30 1.65 11.71 

Tang-e-Tekab 9.86 9.80 1.74 4.39 15.00 

Mg meq/L 
Idanak 1.63 1.56 0.68 0.10 4.29 

Tang-e-Tekab 2.16 1.94 0.95 0.22 6.45 

Na meq/L 
Idanak 3.51 3.13 1.98 0.30 11.68 

Tang-e-Tekab 9.14 8.95 2.61 3.12 17.10 

K meq/L 
Idanak 0.04 0.04 0.02 0.01 0.16 

Tang-e-Tekab 0.06 0.06 0.02 0.01 0.15 

SAR --- 
Idanak 1.92 1.79 0.95 0.19 5.47 

Tang-e-Tekab 3.75 3.62 1.05 1.52 7.71 

To optimize the input structure of machine learning models and improve prediction accuracy, two-dimensionality reduction 

techniques Principal Component Analysis (PCA) and Stepwise Regression were employed. The PCA method aimed to retain 

95% of the total variance by extracting a reduced number of principal components, which are linear combinations of the 

original parameters. In contrast, Stepwise Regression identified the most statistically significant subset of original variables 

by evaluating their individual and collective contributions to the predictive models. 

As shown in Table 2 and Figure 4, at the Idanak station, PCA reduced the number of input components for EC modeling to 

six (PCA1 to PCA6), while for SAR modeling, five principal components were retained. Using the Stepwise Regression 

method, the selected variables for EC modeling included SO₄ ²⁻ , Cl⁻ , HCO₃ ⁻ , and Mg²⁺ , whereas for SAR modeling, 

Na⁺ , SO₄ ²⁻ , HCO₃ ⁻ , Cl⁻ , and discharge (Q) were chosen as inputs. 

Similarly, at the Tang-e-Tekab station located downstream of the Maroon Dam PCA reduced the number of principal 

components to six for EC and five for SAR modeling. Meanwhile, Stepwise Regression selected Cl⁻ , Ca²⁺ , Mg²⁺ , and Na⁺  

for EC modeling and Na⁺ , EC, SO₄ ²⁻ , HCO₃ ⁻ , and Cl⁻  for SAR modeling. 

The differences in selected input variables between the two stations highlight the influence of geographic location on model 

input structure. At the upstream Idanak station, which is situated in the Zagros mountain range before the dam, the river water 

is less affected by intense evaporation, agricultural and industrial activities, and geological interactions. Under such 

conditions, ions such as SO₄ ²⁻ , Cl⁻ , HCO₃ ⁻ , and Mg²⁺  were identified as the most influential inputs for EC modeling, 

primarily reflecting natural mineral dissolution processes. For SAR modeling, variables including Na⁺ , SO₄ ²⁻ , HCO₃ ⁻ , 

Cl⁻ , and Q were selected, with the inclusion of discharge being significant due to its impact on ion concentrations driven by 

seasonal flow variability caused by precipitation and snowmelt. 
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In contrast, the downstream Tang-e-Tekab station is more heavily influenced by controlled dam releases, higher evaporation 

from the reservoir surface, anthropogenic activities, and increased water-rock interactions. At this location, the selected 

variables for EC modeling Cl⁻ , Ca²⁺ , Mg²⁺ , and Na⁺  highlight the dominant role of dissolved ions in downstream salinity 

increase. The inclusion of Ca²⁺  and Na⁺  is particularly relevant due to the potential ion exchange and dissolution of mineral 

formations. In SAR modeling, the input set included Na⁺ , EC, SO₄ ²⁻ , HCO₃ ⁻ , and Cl⁻ . The presence of EC as an input 

in the SAR model suggests that the overall concentration of dissolved salts plays a significant role in sodium adsorption under 

stable, dam-regulated flow conditions. 
Overall, the results of input variable selection at the Idanak and Tang-e- Tekab stations reflect the distinct hydrological, 

geological, and locational characteristics of these sites. The stepwise regression method, by considering the local features of 

each station, identified the most influential parameters for accurate water quality modeling while preserving the 

interpretability of the original variables. This facilitates more precise conceptual, managerial, and decision-making analyses 

regarding the governing physical and chemical processes. In contrast, Principal Component Analysis (PCA) aims to reduce 

dimensionality and eliminate multicollinearity by focusing on combinations that capture the most significant variance in the 

data. Through effective information compression, PCA primarily enhances model efficiency and is, therefore, better suited 

for datasets with high internal correlation. A detailed comparison of the performance of these two approaches in modeling 

will be presented in the following section of this paper. 

Table 2: Model Input Variables Selected for EC and SAR Prediction at Idanak and Tang-e- Tekab Stations Using 

PCA and Stepwise Regression Methods 

Target Inputs 
Dimensionality Reduction 

Method 
Station 

EC PCA1, PCA2, PCA3, PCA4, PCA5, PCA6 
PCA 

Idanak 
SAR PCA1, PCA2, PCA3, PCA4, PCA5 

EC SO4, Cl, HCO3, Mg 
Stepwise Regression 

SAR Na, SO4, HCO3, Cl, Q 

EC PCA1, PCA2, PCA3, PCA4, PCA5, PCA6 
PCA 

Tang-e- Tekab 
SAR PCA1, PCA2, PCA3, PCA4, PCA5 

EC Cl, Ca, Mg, Na 
Stepwise Regression 

SAR Na, EC, SO4, HCO3, Cl 

 

  

  
Figure 3: Percentage of Variance Explained by Principal Components Extracted from Model Inputs 

 

Results Analysis 

     Based on the modeling outcomes presented in Table 3, a comprehensive and multi-dimensional assessment can be made 

regarding the performance of the models, the dimensionality reduction techniques employed, and the influence of station-

specific characteristics. 

Table 3 

TOPSIS 

(Ranking) 

Test Train Model Dim. 

Reduction 

Method 

Parameter Station 

RSR KGE RMSE R2 RSR KGE RMSE R2 

0.41 (3) 0.40 0.81 140.61 0.84 0.34 0.90 106.64 0.89 RF PCA EC Idanak 
0.54 (2) 0.26 0.93 80.87 0.94 0.28 0.94 93.58 0.92 LSTM 
0.38 (4) 0.34 0.86 111.65 0.89 0.39 0.85 127.74 0.92 RF 

A: Idanak-EC B: Idanak-SAR 

C: Tang-e-Tekab-EC-EC 

D: Tang-e-Tekab-SAR-EC 
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0.55 (1) 0.21 0.96 61.56 0.96 0.29 0.94 99.17 0.91 LSTM Stepwise 

Regression 

0.32 (4) 0.33 0.86 0.32 0.90 0.29 0.92 0.27 0.92 RF PCA SAR 

0.41 (2) 0.24 0.97 0.21 0.94 0.17 0.98 0.16 0.97 LSTM 
0.35 (3) 0.23 0.93 0.22 0.95 0.22 0.96 0.21 0.95 RF Stepwise 

Regression 0.56 (1) 0.08 0.99 0.08 0.99 0.03 1.00 0.03 0.99 LSTM 
0.42 (3) 0.39 0.88 123.14 0.85 0.34 0.86 125.31 0.89 RF PCA EC Tang-

e-

Tekab 
0.56 (1) 0.33 0.94 99.97 0.91 0.21 0.97 76.60 0.96 LSTM 
0.41 (4) 0.39 0.85 131.48 0.85 0.33 0.86 116.03 0.90 RF Stepwise 

Regression 0.55 (2) 0.27 0.96 90.37 0.92 0.24 0.96 85.77 0.94 LSTM 
0.42 (4) 0.37 0.85 0.37 0.87 0.26 0.90 0.28 0.94 RF PCA SAR 

0.64 (1) 0.21 0.95 0.18 0.96 0.13 0.99 0.14 0.98 LSTM 
0.49 (3) 0.25 0.92 0.26 0.94 0.23 0.94 0.24 0.95 RF Stepwise 

Regression 0.61 (2) 0.25 0.95 0.29 0.94 0.04 1.00 0.04 0.99 LSTM 

 

Comparison of Model Performance (RF vs. LSTM) 

      The LSTM model consistently outperformed the RF model in most scenarios, particularly in the prediction of the SAR 

parameter. This superiority is evident in lower RSR and RMSE values, alongside higher R² and KGE scores across various 

cases. For instance, at the Idanak station, the LSTM model, when fed with input variables selected through the Stepwise 

method, achieved outstanding accuracy in SAR prediction, with an R² of 0.99 and a remarkably low RMSE of 0.08 in the 

testing phase representing the best performance across all evaluated scenarios. 

In contrast, although the RF model demonstrated acceptable results in certain instances, its overall performance was 

consistently ranked lower than that of the LSTM model based on the TOPSIS method. This discrepancy can be attributed to 

fundamental differences in the structural capabilities of the two models when handling complex, nonlinear relationships 

among input variables. The RF model, which is based on decision tree ensembles, generally performs well for classification 

or problems with discrete and relatively simple structures. However, it tends to face limitations when dealing with datasets 

characterized by continuous interactions and multivariate dependencies [33]. 

On the other hand, the LSTM model, due to its deep and flexible neural network architecture, is better equipped to capture 

hidden nonlinear patterns among temporal variables. Its superior capability in adjusting the weights of dependent inputs 

enhances its predictive accuracy. This characteristic enables LSTM to deliver more precise modeling of EC and SAR 

parameters, especially under hydrologically and geologically complex conditions at the studied stations [34]. 

 

Role of Dimensionality Reduction Techniques (PCA vs. Stepwise Regression) 

     Principal Component Analysis (PCA), as a dimensionality reduction method, transforms the original input variables into 

a new set of independent components by eliminating multicollinearity while retaining the maximum possible variance from 

the original data. Although this transformation enhances computational efficiency, it comes at the cost of interpretability, as 

the original physical meaning of the variables is lost. Nevertheless, PCA demonstrated strong performance in specific 

scenarios particularly in predicting EC at the Tang-e- Tekab station using the LSTM model where it achieved the top rank 

with an R² of 0.96 and an RMSE of 76.60. 

This success can be attributed to the natural compatibility between deep neural networks and decor-related, compressed 

datasets. The hierarchical architecture of LSTM networks enables them to uncover hidden nonlinear patterns embedded within 

the principal components, allowing for effective learning despite the abstraction of the original input features. 

In contrast, Stepwise Regression preserves the original structure and physical interpretability of the input variables, which is 

especially beneficial for managerial and conceptual analyses. By selectively identifying the most influential predictors, this 

method has yielded outstanding results in specific cases for example, SAR modeling at the Idanak station using the LSTM 

model, where it achieved the highest rank with R² = 0.99 and RMSE = 0.08. 
Hence, in contexts where interpretability and parameter traceability are prioritized, particularly for policy or management 

applications, the Stepwise Regression method proves more advantageous. 

 

Influence of Station Location on Model Performance 

      The geographical location of monitoring stations plays a crucial role in shaping the complexity of water quality dynamics 

and, consequently, the performance of predictive models. The Idanak station, located upstream and before the Maroon Dam, 

is characterized by more natural hydrological and geochemical conditions. Although the data in this region may exhibit higher 

fluctuations due to natural variability, they are relatively less affected by anthropogenic interventions such as dam operations 

or surface evaporation. This relative simplicity allows models, especially those based on interpretable input selections such 

as Stepwise Regression, to perform effectively. 

In contrast, the Tang-e- Tekab station is situated downstream of the Maroon Dam, where the stored water is subject to 

extensive evaporation, leading to increased ionic concentrations. Additionally, the prolonged residence time of water within 
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the reservoir enhances opportunities for chemical reactions and interactions with geological formations. These factors 

introduce additional complexity into the relationships between water quality variables, necessitating models capable of 

capturing intricate, nonlinear patterns. In this regard, the PCA+LSTM model owing to its advanced learning capacity and 

temporal feature extraction capabilities demonstrated superior performance, particularly in handling the complex 

hydrochemical behaviors observed downstream. 

 

Final Evaluation Using the TOPSIS Method 

      The TOPSIS multi-criteria decision-making (MCDM) approach was utilized to provide a comprehensive ranking of the 

models by simultaneously considering four statistical indicators across both training and testing phases. Based on this 

integrated assessment: 

 For EC prediction at both stations, the LSTM model regardless of whether PCA or Stepwise Regression was used for 

input selection outperformed the RF model. 

 Similarly, in SAR modeling, LSTM consistently ranked first or second across all scenarios, indicating a clear and 

consistent advantage in performance. 

Overall, at the Idanak station, located upstream of the Maroon basin and prior to the dam, hydrological and geological 

conditions are relatively more stable and less influenced by anthropogenic interventions or long-term accumulation effects. 

In such a context, the relationships among water quality variables tend to be more direct and closely tied to local characteristics 

such as geological formations, precipitation patterns, and surface runoff dynamics. Consequently, Stepwise Regression, which 

selects core variables through an interpretable and targeted process, was effective in identifying the truly influential predictors 

of water quality. When coupled with the LSTM model capable of learning complex nonlinear relationships this resulted in a 

highly accurate and simultaneously interpretable model suitable for practical water resource management. 

In contrast, the Tang-e- Tekab station, located downstream of the Maroon Dam at the basin’s outlet, is subject to more complex 

influences, including dam releases, long-term solute accumulation, significant evaporation, and extended interactions with 

geological formations and riverine sediments. These conditions lead to stronger multicollinearity among water quality 

parameters, making direct analysis more challenging. Under such circumstances, PCA proved effective in reducing 

collinearity and compressing the data into uncorrelated principal components, optimizing the input space for modeling. The 

LSTM model, with its powerful capacity to learn complex patterns, was able to leverage these components to deliver more 

accurate predictions. 

In essence, the success of the Stepwise + LSTM combination at Idanak stemmed from the match between the basin’s relatively 

analyzable and straightforward characteristics and the model’s ability to identify and exploit key inputs. Conversely, the 

superior performance of the PCA + LSTM combination at Tang-e- Tekab can be attributed to the need for dimensionality 

reduction and collinearity mitigation in a highly complex hydrogeochemical environment, as well as the LSTM’s strength in 

extracting latent patterns from transformed features. These findings are consistent with those of similar studies, which 

highlight that model performance is strongly influenced by site-specific hydrological conditions, data quality, and input 

structure [35]. 

The plotted graphs in Figures 5 and 6 based on the testing dataset illustrate the comparison between observed and predicted 

values of EC and SAR parameters at the Idanak and Tang-e- Tekab stations, respectively, further confirming the excellent 

performance of the selected models. 

Overall, the remarkable agreement between the observed and predicted time series, together with the slope values approaching 

unity in the fitted regression lines, highlights the high accuracy and robustness of the models across both stations. This visual 

consistency strongly corroborates the numerical evaluation results presented in the assessment tables. 
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Figure 5: Observed vs. Predicted EC and SAR at Idanak Station (Stepwise Input Selection+LSTM ) 

 

  

  
Figure 6: Observed vs. Predicted EC and SAR at Tang-e- Tekab Station (PCA Input Selection+LSTM ) 

 

Conclusion 
     The comparative analysis reveals that the LSTM model consistently outperforms the RF model across most scenarios, 

particularly in SAR prediction, owing to its superior ability to capture complex nonlinear temporal patterns. Dimensionality 

reduction techniques play a critical role: while PCA enhances model performance by effectively reducing multicollinearity 

and compressing inputs especially beneficial under complex hydrogeochemical conditions at the Tang-e- Tekab station 

Stepwise Regression preserves variable interpretability and excels in more stable, less disturbed environments like the Idanak 

station. The geographical and hydrological context significantly influences model efficacy; upstream Idanak’s relatively 

straightforward conditions favor interpretable input selection paired with LSTM, whereas downstream Tang-e- Tekab’s 

complex dynamics require PCA’s dimensionality reduction combined with LSTM’s advanced pattern recognition. Multi-

criteria TOPSIS evaluation confirms the consistent superiority of LSTM-based models, and visual comparisons of observed 

versus predicted data further validate their high accuracy and robustness. These findings underscore the importance of 

tailoring model architecture and input preprocessing strategies to site-specific conditions for optimal water quality parameter 

prediction, highlighting the practical implications of the research. 

Also, the findings of this study hold significant practical value for supporting water resource management decisions, 

particularly in regulating the quality of water released from the Maroon Dam and managing irrigation practices in downstream 

agricultural lands. At the Tang-e- Tekab station located directly downstream of the dam accurate prediction of salinity-related 

parameters such as EC and SAR using the LSTM model can serve as an advanced early warning system to prevent salinity 

stress in agricultural water. For instance, if the model forecasts a sharp increase in SAR or EC in the coming months, reservoir 
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release volumes and timing can be strategically adjusted to dilute salinity levels and mitigate potential risks to crops. similarly, 

at the upstream Idanak station, where hydrochemical conditions remain relatively stable, accurate forecasts of EC and SAR 

can serve as reliable benchmarks for detecting both natural variations and anthropogenic impacts on water quality. Such 

predictive insights are particularly beneficial for farmers along the Maroon River, especially during sensitive agricultural 

periods such as June to September, when salt-sensitive crops like rice are cultivated. Early knowledge of future water quality 

enables more informed decisions regarding crop selection, irrigation timing, and planting strategies. 

These findings underscore that model selection and dimensionality reduction strategies should not follow a one-size-fits-all 

approach; instead, they must be tailored to the specific hydrological and geo-environmental context of each monitoring site. 

Ultimately, integrating these predictive models into regional decision-support systems could significantly enhance the 

intelligence and adaptability of water resource management. 
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اه النهر باستخدام التعلم الآلي باستخدام نماذجالتنبؤ بجودة مي  LSTM وRF  مع تحليل المكونات

 .الرئيسية والانحدار التدريجي لتقليل الأبعاد: دراسة حالة لحوض نهر مارون
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  الخلاصة

حارة والجافة. يمكن أن يؤدي تعد مراقبة جودة مياه الأنهار والتنبؤ بها أمرًا حيوياً  لإدارة المياه الحضرية والزراعة والاستدامة البيئية، وخاصة في المناطق ال     

من مجرى النهر إلى تغيير كبير في جودة المياه من خلال التأثير على أنظمة التدفق وتراكم الملح، مما قد يؤدي إلى زيادة الملوحة وغيرها وجود السدود على طول 

 .ل عملية النمذجة الدقيقة والتنبؤالمشاكل ذات الصلة. ومع ذلك، يمكن إدارة هذه التغييرات بفعالية من خلا

( والذاكرة طويلة المدى قصيرة RF(وهما الغابة العشوائية )Machine learning modelsأداء نموذجين من نماذج تعلم الآلة  )تهدف هذه الدراسة إلى تقييم  

( في حوض نهر مارون في إيران. تم استخدام تحليل المكونات الرئيسية SAR( ونسبة امتصاص الصوديوم )EC( في التنبؤ بالتوصيل الكهربائي )LSTMالمدى )

(PCA ) والانحدار التدريجي لتقليل أبعاد المدخلات وتعزيز كفاءة النموذج. تشير النتائج إلى أن نموذجLSTM  يتفوق باستمرار علىRF  في كل من محطةIdank 

، حقق Idnak. في محطة SAR( لكلا المعاملين، وخاصة في التنبؤ بـ -downstream)أسفل سدمارون Tang-e-Tekab( ومحطة upstream-)أعلى سد مارون

في مجموعة بيانات الاختبار. أما  KGE 0.96، وRMSE 61.56، وR² 0.96، حيث بلغ EC، مقترنا بالانحدار التدريجي، أعلى دقة في تنبؤات LSTMنموذج 

، فقد حقق  Tang-e-Tekab . أما في محطةKGE 0.99، وRMSE 0.08، وR² 0.99أداءً استثنائياً، محققاً  LSTMفي المحطة نفسها، فقد أظهر  SARبالنسبة لـ 
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LSTM ( مع تحليل المكونات الرئيسيةPCA أدق تنبؤات )EC (R² = 0.96و ،RMSE = 76.60و ،KGE = 0.97 وبالمثل تم الحصول على أفضل تنبؤات .)

SAR  في هذه المحطة باستخدامLSTM  مع تحليل المكونات الرئيسية(PCA) (R² = 0.96و ،RMSE = 0.18و ،KGE = 0.95 تؤكد هذه النتائج فعالية دمج .)

تظهر  مع تقنيات اختيار المدخلات المصممة خصيصًا لظروف كل موقع، مما يبُرز إمكانية تطبيقها في أنظمة دعم قرارات موارد المياه. بشكل عام، LSTMشبكات 

ة هذه التأثيرات بنجاح من خلال النمذجة التنبؤية المتقدمة لتسهيل الإدارة هذه الدراسة أنه على الرغم من تأثير عمليات السدود على جودة المياه، إلا أنه يمكن إدار

 .المستدامة لموارد المياه
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