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ABSTRACT

Monitoring and predicting river water quality is crucial for urban water management, agriculture, and environmental
sustainability, especially in hot and arid regions. The presence of dams along the river course can significantly alter water
quality by affecting flow regimes and salt accumulation, potentially leading to increased salinity and other related
problems. However, such changes can be effectively managed through accurate modeling and forecasting. This study
assesses the performance of two machine learning models, Random Forest (RF) and Long Short-Term Memory (LSTM),
in predicting electrical conductivity (EC) and sodium absorption ratio (SAR) within the Maroon River Basin, Iran.
Principal Component Analysis (PCA) and stepwise regression were employed to reduce input dimensionality and enhance
model efficiency. Results indicate that the LSTM model consistently outperforms RF at both Idank station (upstream of
Maroon Dam) and Tang-e-Tekab station (downstream of Maroon Dam) for both parameters, particularly in SAR
prediction. At Idank station, the LSTM model combined with stepwise regression achieved the highest accuracy for EC
prediction, with an R? of 0.96, RMSE of 61.56, and KGE of 0.96 on the test dataset. For SAR at the same station, LSTM
again demonstrated exceptional performance, attaining an R2 of 0.99, RMSE of 0.08, and KGE of 0.99. At Tang-e-Tekab
station, LSTM with PCA yielded the most precise EC predictions (R?2 = 0.96, RMSE = 76.60, KGE = 0.97). Similarly, the
best SAR predictions at this station were obtained using LSTM with PCA (R? = 0.96, RMSE = 0.18, KGE = 0.95). These
findings underscore the effectiveness of combining LSTM networks with tailored input selection techniques based on site-
specific conditions, highlighting their potential application in water resource decision support systems. Overall, this study
demonstrates that although dam operations influence water quality, such impacts can be successfully managed through
advanced predictive modeling to facilitate sustainable water resources management.
Keywords: Maroon River, Water quality, EC, SAR, RF, LSTM, Dimensionality reduction

Copyright © 2025. This is an open-access article distributed under the Creative Commons Attribution License.

Introduction

Rivers are among the most vital sources of freshwater for both natural ecosystems and human societies. They play a critical
role not only in supplying water for agricultural, industrial, and urban uses but also in maintaining ecological balance and
ecosystem sustainability. However, increasing population growth and the expansion of anthropogenic activities have
significantly impacted river water quality. Agricultural runoff, urban and industrial wastewater discharge, and land-use
changes are among the significant contributing factors. These processes can lead to increased salinity and alterations in the
ionic composition of river water, which may adversely affect human health, agricultural productivity, and environmental
integrity [1].
Effective water resource management requires a comprehensive understanding of water quality variations and the ability to
forecast future trends. In this regard, modeling water quality parameters such as Electrical Conductivity (EC) and Sodium
absorption ratio (SAR) is of particular importance. These parameters are recognized as key indicators for assessing salinity
and overall water quality. Fluctuations in EC and SAR values can signal the intrusion of pollutants or changes in water
sources. For instance, elevated levels of EC and SAR may indicate the presence of dissolved salts in the river, often due to
agricultural runoff or industrial effluents [2].
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Numerous studies have shown that modeling EC based on the analysis of central cation and anion concentrations can
contribute to understanding the chemical behavior of river systems and evaluating the influence of pollution sources. By
examining the relationships between dissolved ions such as sodium (Na* ), chloride (CI~ ), and other salinity-related
constituents, it is possible to assess their impact on key water quality parameters like EC and SAR [3]. For example, during
the planning and siting of new industrial units, predictive models can be used to estimate potential pollutant loads to rivers.
In such cases, data-driven models for estimating EC and SAR enable decision-makers to anticipate the consequences of human
developments on water salinity and to implement timely management strategies [4].

The importance of this issue is especially pronounced in agricultural areas such as the Maroon River Basin, where the
production of strategic crops like wheat, sugarcane, rice, and dates is affected by water quality. Increased salinity not only
reduces crop yield and harms salt-sensitive plants but may also lead to the collapse of local ecosystems.

In this context, modeling water quality parameters under future urban, industrial, and agricultural development scenarios
serves as an effective tool for predicting environmental changes without requiring frequent field measurements. Such
modeling can function as a decision support system for water resource management and aid in the development of sustainable
policies.

Data mining and artificial intelligence techniques provide powerful tools for predicting and managing water quality
parameters. The Random Forest (RF) model, as one of the machine learning algorithms, has demonstrated strong performance
in handling complex and nonlinear datasets and has been widely applied to predict water quality parameters [5,6].
Additionally, the Long Short-Term Memory (LSTM) neural network, due to its memory-based architecture, has shown high
effectiveness in modeling time series and forecasting temporally dependent variables. In recent years, LSTM has been
extensively used for predicting water quality parameters such as EC, dissolved oxygen (DO), and biochemical oxygen demand
(BOD) [7].

Given the significance of this issue, several studies have been conducted to address it.

For instance, Adib et al. (2020) estimated total dissolved solids (TDS), electrical conductivity (EC), and total hardness (TH)
in the Sepidrood River using ANFIS, Gene Expression Programming (GEP), and Least-Squares Support Vector Machine
(LS-SVM) models. Their findings revealed that LS-SVM yielded the highest accuracy for TDS, GEP for EC, and ANFIS for
TH, underlining the power of intelligent systems for water quality forecasting [3].

Ubah et al. (2021) applied Artificial Neural Networks (ANNSs) to forecast major irrigation-related parameters (pH, TDS, EC,
and Na* ) in the Ele River. The models achieved high accuracy (R? > 0.95), capturing seasonal dynamics and indicating
exceedance of FAO thresholds during dry seasons. The study confirmed ANN's effectiveness in water quality management
[8].

Nouraki et al. (2021) employed Multiple Linear Regression (MLR), M5P, Support Vector Regression (SVR), and Random
Forest Regression (RFR) to model TDS, SAR, and TH in the Karun River (1999-2019), using PCA for input variable
selection. The best performance was observed with RFR (TDS), SVR (SAR), and MLR (TH), demonstrating ML capabilities
under limited data conditions [9].

Trach et al. (2022) assessed and forecasted the Water Quality Index (WQI) in Ukrainian rivers using fuzzy logic and ANN
models. A modified WQI framework emphasized hazardous chemicals, with the optimal ANN (Softmax activation and Adam
optimizer) achieving Rz = 0.964 and MAPE = 9.6%, confirming its predictive power [10].

Adib et al. (2022) compared MLP, RBF, ANFIS, LS-SVM, and GEP for estimating water quality at Pol-e-Astaneh station.
LS-SVM, MLP, and GEP achieved the best accuracy for various parameters. Notably, models incorporating lag time
underperformed, suggesting immediate input features are more informative [11].

Ibrahim et al. (2023) integrated PCA and ANN to model water quality in Malaysia. PCA effectively identified pollution
sources, while ANN achieved near-perfect prediction of WQI (R? = 0.9999), supporting the use of hybrid models for
environmental decision-making [12].

Adjovu et al. (2023) estimated TDS concentration in Lake Mead using EC and temperature through various machine learning
models. They found that both simple models, such as linear regression, and advanced ensemble methods, like XGBoost and
GBM, achieved high prediction accuracy. The study demonstrated the effectiveness of using surrogate variables and data-
driven approaches for water quality monitoring [13].

Pourhosseini et al. (2023) developed hybrid SVM models optimized with metaheuristic algorithms (CA, HS, TLBO) to predict
TDS in the Babolrood River, Iran. Using long-term monthly water quality data and input selection via Shannon’s entropy and
correlation analysis, the SVM-TLBO model achieved superior accuracy compared to baseline models, demonstrating its
effectiveness in predicting TDS in river systems [14].

Pyo et al. (2023) reviewed the application of LSTM models for predicting water quality in inland environments. They
highlighted LSTM's strengths in capturing temporal dependencies and discussed enhanced versions of LSTM using
preprocessing, CNNs, attention mechanisms, and transfer learning. Their review confirms LSTM's robustness and adaptability
for time-series water quality modelling [15].

Karbasi et al. (2024) applied a hybrid CNN-LSTM deep learning model, enhanced with Boruta-XGBoost feature selection,
to forecast river EC up to 10 days ahead. Using data from two Australian rivers, the model outperformed other machine
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learning methods in both short- and medium-term predictions. Their results highlight the strong potential of deep learning
and feature selection techniques for accurate EC forecasting in river systems [16].

Jaafer and Al-Mukhtar (2024) used ensemble learning (AdaBoost and Gradient Boosting) to predict DO and BOD in the
Tigris River. Gradient Boosting achieved R2 > 0.99, highlighting ensemble models' superior predictive capacity [17].

Ismail et al. (2024) developed ANN architectures (feedforward and radial basis networks) to estimate WQI in the Klang River.
The best model feedforward ANN with a single hidden layer offered fast, cost-effective, and reliable prediction, serving as
an early warning tool for pollution [18].

Satish et al. (2024) created a stacked ANN ensemble using geospatial, climatic, and land use data to forecast EC, BOD, nitrate,
and DO in the Godavari River Basin. Ensemble methods (Bagging, Boosting) outperformed baseline FFNN models, and the
stacked meta-model (XGBoost, RF, ET) achieved improved accuracy (e.g., BOD R2 from 0.87 to 0.91) [19].

Adnan et al. (2025) proposed a hybrid ANN—Enhanced Runge Kutta (ANN-ERUN) model to predict BOD;s in South Korea.
The model achieved R? = 0.857 and RMSE = 1.24 mg/L using eight parameters. It outperformed traditional models and
showed promise for water quality monitoring [20].

Khosravi et al. (2025) introduced a hybrid Bi-LSTM + BA-AMT model to forecast turbidity and DO in the Clackamas River.
Bi-LSTM outperformed other methods, especially for turbidity, while BA-AMT effectively captured extreme events. The
study emphasized the robustness of deep learning and metaheuristic optimization [21].

Abushandi (2025) applied ANN models to predict water quality in the Liffey (Ireland) and Andarax (Spain) rivers. The models
achieved high performance (e.g., R2 = 0.98 for EC), capturing complex spatiotemporal patterns and projecting notable trends,
including a 20% drop in DO in the Liffey [22].

Al-Khuzaie et al. (2025) developed a GIS-integrated ANN model to predict the Heavy Metal Pollution Index (HPI) in Irag's
Euphrates River using data from 40 monitoring sites. The model attained excellent validation metrics (R2 =0.999, RSR =1,
NSE = 0.99), identifying major pollutants such as nickel and cadmium, which exceeded WHO standards [23].

Finally, Isik and Akkan (2025) modeled WQI in the Southeastern Black Sea Basin using novel ANN models Single
Multiplicative Neuron (SMN), Multilayer Perceptron (MLP), and Pi-Sigma ANN (PS-ANN). Based on monthly data from
eight sites, the PS-ANN and SMN models introduced showed high accuracy and ability to capture complex nonlinear
dynamics [24].

Although numerous studies have applied machine learning techniques to predict water quality, most have either focused on a
limited set of models or targeted specific parameters under generic conditions. Furthermore, few of them have systematically
categorized the modelling approaches based on prediction targets (e.g., EC, SAR), input selection strategies (e.g., PCA,
feature ranking), or spatial scenarios (e.g., upstream vs. downstream monitoring). A critical synthesis highlighting
methodological gaps and model suitability under varying riverine conditions is often lacking. This study addresses these gaps
by combining dimensionality reduction techniques with state-of-the-art models (RF and LSTM), while explicitly accounting
for spatial variability in water quality across different monitoring stations in the Maroon River Basin.

Moreover, predictive modelling plays a crucial role when real-time observational data are unavailable due to equipment
malfunction, monitoring interruptions, or communication failures. By learning from historical patterns and upstream data,
reliable models can serve as effective surrogates for estimating downstream water quality parameters under such conditions.
Additionally, forecasting capabilities provide early warnings for salinity risks, which is particularly valuable during sensitive
agricultural periods. These practical considerations underscore the need for robust predictive tools, even when observational
data are available for both intake and out-take stations.

Materials and Methods

Study Area

The Maroon River watershed, a sub-basin of the Maroon-Jarrahi river system, is located in southwestern Iran. It lies between
longitudes 50°05' to 51°11" E and latitudes 30°39' to 31°21' N. The river originates in the Zagros Mountains and flows
approximately 120 km before entering the Maroon Dam reservoir. With a total length of about 422 km, the Maroon River is
a vital water resource for Khuzestan Province, particularly in supplying irrigation water to southeastern agricultural lands.
This river is a perennial stream with a mixed hydrological regime driven by both rainfall and snowmelt. Most precipitation
occurs as rainfall at lower elevations, while snowfall is dominant at higher altitudes. Annual precipitation in the basin varies
significantly, ranging from about 150 mm in the plains to over 900 mm in the northern highlands. The total watershed area is
approximately 3,824 kmz, with elevations spanning from 240 meters at the lowest point to 3,485 meters in the mountainous
areas [25]. Figure 1 shows the major rivers of the Maroon watershed, the locations of two hydrometric stations (Idanak and
Tang-e-Tekab), and the Maroon Dam.

According to regional environmental reports, extensive sand and gravel extraction has led to severe ecological disturbances
in the riverbed. Additionally, wastewater discharge from 15 industrial and service facilities, along with domestic sewage from
urban and rural settlements, has exacerbated water quality degradation. Particularly in the downstream section between the
Idanak station and the Beheshtan plain, the river flows through gypsum- and salt-rich geological formations. Combined with
intense evaporation caused by high regional temperatures, these conditions significantly elevate the salinity and mineral
content of the river water [26].
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Figure 1: Maroon watershed and locations of stations and dam
Data and Preprocessing
This study focuses on modelling two critical water quality parameters, Electrical Conductivity (EC) and Sodium Adsorption
Ratio (SAR), due to their importance in assessing water suitability for agriculture and environmental management. The dataset
spans 21 years (1999-2019) and was collected monthly from two hydrometric stations, ldanak and Tang-e-Tekab, located
within the Maroon River watershed. Parameters measured include discharge, temperature, TDS, EC, pH, SO, # , HCO; ~,
Cl~, Caz* ,Mg?* ,Na* , K* ,and SAR.
To enhance model efficiency and prevent overfitting, dimensionality reduction techniques were applied to eliminate
multicollinearity and remove redundant or weakly correlated variables. Two methods—Stepwise Regression and Principal
Component Analysis (PCA) were used to identify the most informative predictors for each target parameter.
Stepwise Regression
Stepwise Regression is a statistical method that iteratively adds or removes variables based on criteria such as the F-test and
the coefficient of determination (R?), resulting in a subset of predictors with the most significant influence on water quality
parameters. This approach is particularly valuable in environmental modeling due to its transparency in variable selection and
its direct interpretability [27].
Principal Component Analysis (PCA)
PCA is a widely used technique for dimensionality reduction, which transforms the original set of correlated variables into a
new set of uncorrelated variables (principal components) that retain the most variance in the data. Components with low
variance are deemed negligible, allowing for a compact representation of the dataset without significant information loss.
PCA helps eliminate multicollinearity and reduce noise, thereby enhancing model performance [27].
The selected features from both methods were subsequently used to train machine learning models for predicting water quality
parameters. This approach provides a unified modeling framework to compare the effectiveness of the two-dimensionality
reduction techniques.
Random Forest (RF)
The Random Forest algorithm was introduced by Breiman in 2001 as an ensemble learning method designed for regression
and classification problems based on the development of decision trees. A random forest is composed of an ensemble of
unpruned decision trees, each generated through a recursive partitioning algorithm. In other words, the random forest
combines multiple decision trees, each constructed from different self-organizing random samples of the data [28].
To build a regression tree, recursive partitioning, and multiple regression techniques are employed. The decision process at
each internal node, starting from the root node, is repeated according to a tree-based rule until a predefined stopping criterion
is met.
In the RF method, a random vector X,, independent of the random vectors Xi, Xa,..., Xn.1 is generated for the n™ tree. All
vectors follow the same distribution. The tree regression is computed using the training dataset and X, resulting in a set of n
trees defined as follows [28]:

Xn = {h1(x),h2(x), ,hn(x)} (1)

hy = h(x, Xp), x = {x1, %3, ..., %, } (2)
The above p dimensional vector forms a forest, and the outputs for each tree are presented as follows:

5]; = hl(x)'y; = hz(X), '5’; = hn(x) (3)

In the above equation, 7, represents the output of the n tree. To obtain the final output, the average of all the tree predictions
is calculated.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks are a specialized type of Recurrent Neural Network (RNN) designed to capture
long-term dependencies in sequential data [29] effectively. Introduced by Hochreiter and Schmidhuber [30], LSTMs have
demonstrated outstanding performance across various applications and are now widely regarded as a standard model for time-
series prediction tasks.

Traditional RNNs often face challenges such as vanishing or exploding gradients during training, limiting their ability to learn
long-range dependencies. LSTM overcomes these issues by incorporating a memory cell capable of preserving information
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over extended sequences. This feature makes LSTM particularly suitable for modeling time-series data with long lags and
complex temporal dynamics.
The key component of the LSTM architecture is its gated mechanism, which controls the flow of information within the
network. It consists of three main gates:

e Forget gate: decides which parts of the previous memory to discard;

¢ Input gate: controls how much new information should be added to the memory cell;

e  Output gate: determines how much of the current memory state is passed to the next layer or time step.
These gates enable the network to selectively retain important information and discard irrelevant data over time, thereby
enhancing learning efficiency and prediction accuracy. The internal operations of these gates and the update rules for the
memory cell are mathematically described by Equations (4) to (8):

Input gate: iy = o(W; - [he_y, %] + by) 4)
Forget gate: f, = o ((Wf [heq, x.] + bf)), C, = tanh(W - [he_q, x¢] + bc) (5)
Output gate: 0, = a(Wy, * [he—q, x:] + bg) (6)
Long memory: C; = f, * Co_q + iy * C; )
Short memory: h, = 0, * tanh(C,) (8)

The matrix W denotes the weight parameters associated with the gates and memory cells in the LSTM architecture. The vector
X represents the input data at each time step, while h denotes the hidden state, which is responsible for maintaining and
updating the historical information across sequences. The functions o and tanh correspond to the sigmoid and hyperbolic
tangent activation functions, respectively. Once adequately trained, the LSTM network becomes capable of learning and
extracting meaningful patterns from complex time-series data. These extracted features, represented by the hidden states,
encapsulate the temporal dependencies in the input sequences. Based on this hidden information, the final fully connected
layer of the model transforms the learned representations into accurately predicted outputs [31]. Figure 2 illustrates the general
structure of the LSTM network.
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Modeling Considerations and Evaluation Metrics
In the modeling process for Electrical Conductivity (EC), the Total Dissolved Solids (TDS) parameter was deliberately
excluded as an input. This decision stems from the fact that EC can be approximately estimated using TDS through the
empirical relationship EC = 0.65 x TDS. Therefore, the objective of this study is to develop a model capable of predicting EC
based solely on other water quality parameters without relying directly on TDS.
Similarly, for modeling Sodium Adsorption Ratio (SAR), the following equation is commonly used:

Na*

Ca*? + Mg+? 9)
2

If the concentrations of Na* , Ca?* , and Mg?* ions are available for a given period, the Sodium Adsorption Ratio (SAR) can
be directly calculated using Equation (9). However, in this study, it was assumed that at least one of these three parameters
might be unavailable. Accordingly,Ca2* , and Mg?* were deliberately excluded from the input structure of the machine-
learning models for SAR prediction. This decision ensures that the models are capable of estimating SAR independently of
the empirical Equation, thereby enhancing their generalizability and robustness. This consideration was carefully applied to
avoid the inclusion of derived variables, minimize data redundancy, and reduce the risk of statistical bias, ensuring that the
models are developed based on realistic and practical assumptions.
For model training and validation, the dataset was randomly divided into two subsets: 70% for training and 30% for testing.
To assess model performance, four statistical indicators were employed: the coefficient of determination (R2), root mean
square error (RMSE), the modified Kling-Gupta Efficiency (KGE), and the RSR index. These indicators are further explained
in the following section.
Among these metrics, KGE holds particular importance. Unlike traditional indicators such as Rz or RMSE, which evaluate
limited aspects of performance, KGE simultaneously incorporates three critical components: bias, correlation, and variability
ratio. In this study, the strong agreement between KGE and other metrics contributed to a more comprehensive and reliable
evaluation of the overall model performance.

SAR =
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Where:

0;: Observed value

P;: Predicted value

0: Mean of observed values

n: Number of observations

I': Pearson correlation coefficient between observed and predicted values

B =mean (P) / mean (O): Ratio of predicted to observed means

y = CVp / CVo: Ratio of predicted to observed coefficients of variation

2.6 TOPSIS

To comprehensively rank the predictive models, the Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS) was applied. This multi-criteria decision-making method evaluates each alternative’s relative proximity to an ideal
solution based on performance metrics. In this study, four statistical indicators (R?, RMSE, KGE, and RSR) were used for
both training and testing phases, and their weights were calculated using the Shannon entropy method [32].

The TOPSIS process involves constructing a decision matrix, normalizing the data, applying weights to each criterion,
identifying the ideal and anti-ideal solutions, computing the Euclidean distances of each alternative to these ideal points, and
finally calculating the relative closeness coefficient C;" for each alternative, defined as:

* Si
i = s;+st (14)

Where S;* and S;” are the distances of the i-th alternative from the positive and negative ideal solutions, respectively. In the

referenced study, the Shannon entropy method was used to determine the weights of the criteria objectively [32].

Figure 3 illustrates the main steps of the research process.

[ EC=f(Data) ] [ SAR=f(Data) J

PCA(Data) & Stepwise Regression (Data)

Modeling with RF & LSTM Model Evaluation
(EC, SAR Predictions) (R’ RMSE, KGE, RSR)

Best Model Selection g Z ire
for EC and SAR Model Ranking using TOPSIS ’

Figure 2: Flowchart of the research steps

Reduced Inputs: J

3. Results

Descriptive statistical analysis for the two hydrometric stations, ldanak and Tang-e-Tekab, as presented in Table 1, reveals
significant differences in both quantitative and qualitative characteristics of the Maroon River water. At the Idanak station,
located in the upstream mountainous regions of the basin, the average discharge is 52.05 m?/s with a standard deviation of
87.40, indicating considerable flow variability driven by seasonal precipitation and snowmelt. In contrast, at the Tang-e-
Tekab station located downstream and influenced by the Maroon Dam the average discharge is lower (37.06 m?/s), and the
variability is reduced (standard deviation of 48.59), reflecting the regulated water releases from the dam reservoir.
Salinity-related parameters such as Total Dissolved Solids (TDS) and Electrical Conductivity (EC) are significantly higher at
Tang-e-Tekab (1359.93 mg/l and 2039.12 pS/cm, respectively) compared to Idanak (637.03 mg/l and 972.16 puS/cm). This
increase can be attributed to several factors, including the river’s passage through evaporite formations rich in gypsum and
salt, industrial and agricultural activities along the riverbanks, and the high rate of evaporation in the lower basin. The southern
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location and lower elevation of the downstream areas expose them to more intense evaporation, further exacerbated by
substantial evaporative losses from the surface of the Maroon Dam reservoir, which concentrates the dissolved salts.
Moreover, higher concentrations of major ions such as CI~ , Na* , Ca?* , and Mg?* at Tang-e-Tekab contribute to an elevated
Sodium Adsorption Ratio (SAR) at this station (3.75 versus 1.92 at Idanak). These disparities underscore the significant
influence of geographic location, geological features, and hydro-climatic conditions on water quality. They also highlight the
importance of continuous spatiotemporal monitoring of water resources for effective water quality management.

Table 1: Descriptive statistics of Maroon River at two monitoring stations

Parameter  Unit Station Mean  Median Std. Deviation Minimum Maximum
0 s Idanak 52.05 23.52 87.40 4.00 756.26
Tang-e-Tekab  37.06 27.20 48.59 3.06 479.00
Idanak 637.03  595.50 271.53 275.00 3127.00
TDS mg/L
Tang-e-Tekab 1359.93 1373.00 219.51 685.00 1988.00
Idanak 972.16  913.00 327.11 452.00 2212.00
EC uS/cm
Tang-e-Tekab 2039.12 2060.00 350.24 845.00 2942.00
PH Idanak 7.70 7.70 0.35 6.70 8.70
Tang-e-Tekab 7.77 7.80 0.26 7.00 8.60
Idanak 3.07 2.90 1.72 0.07 14.30
S04 meq/L
Tang-e-Tekab ~ 9.32 9.30 2.11 1.04 18.00
Idanak 3.01 3.06 0.66 0.49 6.03
HCO3 meq/L
Tang-e-Tekab 241 2.39 0.51 0.79 4.00
Idanak 3.72 3.29 2.01 0.58 11.71
Cl meq/L
Tang-e-Tekab  9.23 9.13 2.48 2.94 16.13
Idanak 4.75 4.68 1.30 1.65 11.71
Ca meq/L
Tang-e-Tekab 9.86 9.80 1.74 4.39 15.00
Idanak 1.63 1.56 0.68 0.10 4.29
Mg meq/L
Tang-e-Tekab 2.16 1.94 0.95 0.22 6.45
Idanak 3.51 3.13 1.98 0.30 11.68
Na meq/L
Tang-e-Tekab 9.14 8.95 2.61 3.12 17.10
Idanak 0.04 0.04 0.02 0.01 0.16
K meq/L
Tang-e-Tekab  0.06 0.06 0.02 0.01 0.15
. Idanak 1.92 1.79 0.95 0.19 5.47
Tang-e-Tekab 3.75 3.62 1.05 1.52 7.71

To optimize the input structure of machine learning models and improve prediction accuracy, two-dimensionality reduction
techniques Principal Component Analysis (PCA) and Stepwise Regression were employed. The PCA method aimed to retain
95% of the total variance by extracting a reduced number of principal components, which are linear combinations of the
original parameters. In contrast, Stepwise Regression identified the most statistically significant subset of original variables
by evaluating their individual and collective contributions to the predictive models.

As shown in Table 2 and Figure 4, at the Idanak station, PCA reduced the number of input components for EC modeling to
six (PCA1 to PCAG6), while for SAR modeling, five principal components were retained. Using the Stepwise Regression
method, the selected variables for EC modeling included SO, 2=, CI- , HCO; ~ , and Mg?* , whereas for SAR modeling,
Na* , SO, 2 ,HCO3; ~, ClI™, and discharge (Q) were chosen as inputs.

Similarly, at the Tang-e-Tekab station located downstream of the Maroon Dam PCA reduced the number of principal
components to six for EC and five for SAR modeling. Meanwhile, Stepwise Regression selected CI~ , Ca2* , Mg?* , and Na*
for EC modeling and Na* , EC, SO, 2~ , HCO3 ~ , and CI~ for SAR modeling.

The differences in selected input variables between the two stations highlight the influence of geographic location on model
input structure. At the upstream ldanak station, which is situated in the Zagros mountain range before the dam, the river water
is less affected by intense evaporation, agricultural and industrial activities, and geological interactions. Under such
conditions, ions such as SO, 2, ClI~ , HCO3; ~ , and Mg?* were identified as the most influential inputs for EC modeling,
primarily reflecting natural mineral dissolution processes. For SAR modeling, variables including Na* , SO, ¢ , HCO; ~,
Cl~ , and Q were selected, with the inclusion of discharge being significant due to its impact on ion concentrations driven by
seasonal flow variability caused by precipitation and snowmelt.
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In contrast, the downstream Tang-e-Tekab station is more heavily influenced by controlled dam releases, higher evaporation
from the reservoir surface, anthropogenic activities, and increased water-rock interactions. At this location, the selected
variables for EC modeling CI~ , Ca2* , Mg?* , and Na* highlight the dominant role of dissolved ions in downstream salinity
increase. The inclusion of Ca2* and Na* is particularly relevant due to the potential ion exchange and dissolution of mineral
formations. In SAR modeling, the input set included Na* , EC, SO, 2~ , HCO; ~ , and CI~ . The presence of EC as an input
in the SAR model suggests that the overall concentration of dissolved salts plays a significant role in sodium adsorption under
stable, dam-regulated flow conditions.

Overall, the results of input variable selection at the ldanak and Tang-e- Tekab stations reflect the distinct hydrological,
geological, and locational characteristics of these sites. The stepwise regression method, by considering the local features of
each station, identified the most influential parameters for accurate water quality modeling while preserving the
interpretability of the original variables. This facilitates more precise conceptual, managerial, and decision-making analyses
regarding the governing physical and chemical processes. In contrast, Principal Component Analysis (PCA) aims to reduce
dimensionality and eliminate multicollinearity by focusing on combinations that capture the most significant variance in the
data. Through effective information compression, PCA primarily enhances model efficiency and is, therefore, better suited
for datasets with high internal correlation. A detailed comparison of the performance of these two approaches in modeling
will be presented in the following section of this paper.

Table 2: Model Input Variables Selected for EC and SAR Prediction at Idanak and Tang-e- Tekab Stations Using
PCA and Stepwise Regression Methods

Station Dlmen5|ol\r;lael':rt]3(/)(lj?eductlon Inputs Target
PCA PCA1, PCA2, PCA3, PCA4, PCA5, PCA6 EC
Idanak PCA1, PCA2, PCA3, PCA4, PCA5 SAR
Stepwise Regression S04, Cl, HCO3, Mg EC
Na, SO4, HCO3, Cl, Q SAR
PCA PCAL, PCA2, PCA3, PCA4, PCA5, PCA6 EC
PCAL, PCA2, PCA3, PCA4, PCA5 SAR
Tang-e- Tekab
Stepwise Regression Cl, Ca, Mg, Na EC
Na, EC, SO4, HCO3, ClI SAR
Ews A: ldanak-EC S o B: Idanak-SAR
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Figure 3: Percentage of Variance Explained by Principal Components Extracted from Model Inputs

Results Analysis
Based on the modeling outcomes presented in Table 3, a comprehensive and multi-dimensional assessment can be made

regarding the performance of the models, the dimensionality reduction techniques employed, and the influence of station-
specific characteristics.

Table 3
Station Parameter Dim. Model Train Test TOPSIS
Reduction R? RMSE KGE RSR R? RMSE KGE RSR (Ranking)
Method
Idanak EC PCA RF 0.89 106.64 090 0.34 0.84 14061 081 040 0413

LSTM 092 9358 094 0.28 094 8087 093 026 054(2)
RF 092 12774 085 039 0.89 11165 086 0.34 0.38(4)
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Stepwise LSTM 091 99.17 094 029 096 6156 096 0.21 0.55(1)
Regression

SAR PCA RF 092 027 092 029 090 032 086 033 0.32(4)

LSTM 097 016 098 0.17 094 021 097 024 041(2

Stepwise RF 095 021 09 022 095 022 093 023 035(3)

Regression LSTM 099 003 1.00 0.03 0.99 008 099 0.08 0.56()

Tang- EC PCA RF 089 12531 086 0.34 0.85 12314 088 0.39 0.42(3)
e- LSTM 096 76.60 0.97 021 091 99.97 094 033 0.56(1)
Tekab Stepwise RF 090 116.03 0.86 0.33 0.85 13148 085 0.39 0.41(4)
Regression LSTM 094 8577 096 0.24 0.92 9037 09 027 055(2)

SAR PCA RF 094 028 090 026 087 037 085 037 042(4)

LSTM 098 014 099 013 096 018 095 021 0.64(1)
Stepwise RF 095 024 094 023 094 026 092 025 049(3)
Regression LSTM 099 0.04 100 0.04 094 029 095 025 0.61()

Comparison of Model Performance (RF vs. LSTM)

The LSTM model consistently outperformed the RF model in most scenarios, particularly in the prediction of the SAR
parameter. This superiority is evident in lower RSR and RMSE values, alongside higher Rz and KGE scores across various
cases. For instance, at the Idanak station, the LSTM model, when fed with input variables selected through the Stepwise
method, achieved outstanding accuracy in SAR prediction, with an R2 of 0.99 and a remarkably low RMSE of 0.08 in the
testing phase representing the best performance across all evaluated scenarios.

In contrast, although the RF model demonstrated acceptable results in certain instances, its overall performance was
consistently ranked lower than that of the LSTM model based on the TOPSIS method. This discrepancy can be attributed to
fundamental differences in the structural capabilities of the two models when handling complex, nonlinear relationships
among input variables. The RF model, which is based on decision tree ensembles, generally performs well for classification
or problems with discrete and relatively simple structures. However, it tends to face limitations when dealing with datasets
characterized by continuous interactions and multivariate dependencies [33].

On the other hand, the LSTM model, due to its deep and flexible neural network architecture, is better equipped to capture
hidden nonlinear patterns among temporal variables. Its superior capability in adjusting the weights of dependent inputs
enhances its predictive accuracy. This characteristic enables LSTM to deliver more precise modeling of EC and SAR
parameters, especially under hydrologically and geologically complex conditions at the studied stations [34].

Role of Dimensionality Reduction Techniques (PCA vs. Stepwise Regression)

Principal Component Analysis (PCA), as a dimensionality reduction method, transforms the original input variables into
a new set of independent components by eliminating multicollinearity while retaining the maximum possible variance from
the original data. Although this transformation enhances computational efficiency, it comes at the cost of interpretability, as
the original physical meaning of the variables is lost. Nevertheless, PCA demonstrated strong performance in specific
scenarios particularly in predicting EC at the Tang-e- Tekab station using the LSTM model where it achieved the top rank
with an R? of 0.96 and an RMSE of 76.60.
This success can be attributed to the natural compatibility between deep neural networks and decor-related, compressed
datasets. The hierarchical architecture of LSTM networks enables them to uncover hidden nonlinear patterns embedded within
the principal components, allowing for effective learning despite the abstraction of the original input features.
In contrast, Stepwise Regression preserves the original structure and physical interpretability of the input variables, which is
especially beneficial for managerial and conceptual analyses. By selectively identifying the most influential predictors, this
method has yielded outstanding results in specific cases for example, SAR modeling at the lIdanak station using the LSTM
model, where it achieved the highest rank with Rz = 0.99 and RMSE = 0.08.
Hence, in contexts where interpretability and parameter traceability are prioritized, particularly for policy or management
applications, the Stepwise Regression method proves more advantageous.

Influence of Station Location on Model Performance

The geographical location of monitoring stations plays a crucial role in shaping the complexity of water quality dynamics
and, consequently, the performance of predictive models. The Idanak station, located upstream and before the Maroon Dam,
is characterized by more natural hydrological and geochemical conditions. Although the data in this region may exhibit higher
fluctuations due to natural variability, they are relatively less affected by anthropogenic interventions such as dam operations
or surface evaporation. This relative simplicity allows models, especially those based on interpretable input selections such
as Stepwise Regression, to perform effectively.
In contrast, the Tang-e- Tekab station is situated downstream of the Maroon Dam, where the stored water is subject to
extensive evaporation, leading to increased ionic concentrations. Additionally, the prolonged residence time of water within
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the reservoir enhances opportunities for chemical reactions and interactions with geological formations. These factors
introduce additional complexity into the relationships between water quality variables, necessitating models capable of
capturing intricate, nonlinear patterns. In this regard, the PCA+LSTM model owing to its advanced learning capacity and
temporal feature extraction capabilities demonstrated superior performance, particularly in handling the complex
hydrochemical behaviors observed downstream.

Final Evaluation Using the TOPSIS Method
The TOPSIS multi-criteria decision-making (MCDM) approach was utilized to provide a comprehensive ranking of the

models by simultaneously considering four statistical indicators across both training and testing phases. Based on this
integrated assessment:

e For EC prediction at both stations, the LSTM model regardless of whether PCA or Stepwise Regression was used for

input selection outperformed the RF model.
e Similarly, in SAR modeling, LSTM consistently ranked first or second across all scenarios, indicating a clear and
consistent advantage in performance.

Overall, at the ldanak station, located upstream of the Maroon basin and prior to the dam, hydrological and geological
conditions are relatively more stable and less influenced by anthropogenic interventions or long-term accumulation effects.
In such a context, the relationships among water quality variables tend to be more direct and closely tied to local characteristics
such as geological formations, precipitation patterns, and surface runoff dynamics. Consequently, Stepwise Regression, which
selects core variables through an interpretable and targeted process, was effective in identifying the truly influential predictors
of water quality. When coupled with the LSTM model capable of learning complex nonlinear relationships this resulted in a
highly accurate and simultaneously interpretable model suitable for practical water resource management.
In contrast, the Tang-e- Tekab station, located downstream of the Maroon Dam at the basin’s outlet, is subject to more complex
influences, including dam releases, long-term solute accumulation, significant evaporation, and extended interactions with
geological formations and riverine sediments. These conditions lead to stronger multicollinearity among water quality
parameters, making direct analysis more challenging. Under such circumstances, PCA proved effective in reducing
collinearity and compressing the data into uncorrelated principal components, optimizing the input space for modeling. The
LSTM model, with its powerful capacity to learn complex patterns, was able to leverage these components to deliver more
accurate predictions.
In essence, the success of the Stepwise + LSTM combination at Idanak stemmed from the match between the basin’s relatively
analyzable and straightforward characteristics and the model’s ability to identify and exploit key inputs. Conversely, the
superior performance of the PCA + LSTM combination at Tang-e- Tekab can be attributed to the need for dimensionality
reduction and collinearity mitigation in a highly complex hydrogeochemical environment, as well as the LSTM’s strength in
extracting latent patterns from transformed features. These findings are consistent with those of similar studies, which
highlight that model performance is strongly influenced by site-specific hydrological conditions, data quality, and input
structure [35].
The plotted graphs in Figures 5 and 6 based on the testing dataset illustrate the comparison between observed and predicted
values of EC and SAR parameters at the Idanak and Tang-e- Tekab stations, respectively, further confirming the excellent
performance of the selected models.
Overall, the remarkable agreement between the observed and predicted time series, together with the slope values approaching
unity in the fitted regression lines, highlights the high accuracy and robustness of the models across both stations. This visual
consistency strongly corroborates the numerical evaluation results presented in the assessment tables.

Observed vs. Predicted EC at Idanak Station Observed vs. Predicted EC Scatter Plot with
(Stepwise + LSTM) Fit Line at Idanak Station (Stepwise + LSTM)
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Observed vs. Predicted SAR at Idanak Station Observed vs. Predicted SAR Scatter Plot with

(Stepwise + LSTM) Fit Line at Idanak Station (Stepwise + LSTM)
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Figure 5: Observed vs. Predicted EC and SAR at Idanak Station (Stepwise Input Selection+LSTM )
Observed vs. Predicted EC at Tang-e-Tekab Observed vs. Predicted EC Scatter Plot with Fit
Station (PCA+ LSTM) Line at Tang-e-Tekab Station (PCA+ LSTM)
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Figure 6: Observed vs. Predicted EC and SAR at Tang-e- Tekab Station (PCA Input Selection+LSTM )
Conclusion

The comparative analysis reveals that the LSTM model consistently outperforms the RF model across most scenarios,
particularly in SAR prediction, owing to its superior ability to capture complex nonlinear temporal patterns. Dimensionality
reduction techniques play a critical role: while PCA enhances model performance by effectively reducing multicollinearity
and compressing inputs especially beneficial under complex hydrogeochemical conditions at the Tang-e- Tekab station
Stepwise Regression preserves variable interpretability and excels in more stable, less disturbed environments like the Idanak
station. The geographical and hydrological context significantly influences model efficacy; upstream Idanak’s relatively
straightforward conditions favor interpretable input selection paired with LSTM, whereas downstream Tang-e- Tekab’s
complex dynamics require PCA’s dimensionality reduction combined with LSTM’s advanced pattern recognition. Multi-
criteria TOPSIS evaluation confirms the consistent superiority of LSTM-based models, and visual comparisons of observed
versus predicted data further validate their high accuracy and robustness. These findings underscore the importance of
tailoring model architecture and input preprocessing strategies to site-specific conditions for optimal water quality parameter
prediction, highlighting the practical implications of the research.

Also, the findings of this study hold significant practical value for supporting water resource management decisions,
particularly in regulating the quality of water released from the Maroon Dam and managing irrigation practices in downstream
agricultural lands. At the Tang-e- Tekab station located directly downstream of the dam accurate prediction of salinity-related
parameters such as EC and SAR using the LSTM model can serve as an advanced early warning system to prevent salinity
stress in agricultural water. For instance, if the model forecasts a sharp increase in SAR or EC in the coming months, reservoir
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release volumes and timing can be strategically adjusted to dilute salinity levels and mitigate potential risks to crops. similarly,
at the upstream Idanak station, where hydrochemical conditions remain relatively stable, accurate forecasts of EC and SAR
can serve as reliable benchmarks for detecting both natural variations and anthropogenic impacts on water quality. Such
predictive insights are particularly beneficial for farmers along the Maroon River, especially during sensitive agricultural
periods such as June to September, when salt-sensitive crops like rice are cultivated. Early knowledge of future water quality
enables more informed decisions regarding crop selection, irrigation timing, and planting strategies.

These findings underscore that model selection and dimensionality reduction strategies should not follow a one-size-fits-all
approach; instead, they must be tailored to the specific hydrological and geo-environmental context of each monitoring site.
Ultimately, integrating these predictive models into regional decision-support systems could significantly enhance the
intelligence and adaptability of water resource management.
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