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ABSTRACT 

      Smart irrigation systems have become essential for mitigating water scarcity, climate variability, and rising 

energy costs in modern agriculture. This review synthesizes recent advances in multi-source sensing, IoT/LPWAN 

connectivity, and hybrid edge–cloud AI frameworks that enable real-time irrigation and fertigation optimisation. 

A PRISMA-based methodology was applied to over 150 studies, focusing on high-impact contributions from 

2017–2025. Results show that AI- and sensor-driven scheduling commonly reduces water use by 15–40% while 

maintaining or improving yield and nutrient-use efficiency across open-field, orchard, and greenhouse systems. 

Machine-learning models (RF, XGB, LSTM, CNN–LSTM, Transformer) and control strategies (MPC, RL, fuzzy 

logic) significantly enhance ET estimation, soil-moisture forecasting, anomaly detection, and automated valve 

control. Commercial platforms such as Netafim NetBeat®, Rivulis Manna, Jain AquaSphere, Rain Bird IQ4, and 

Toro IntelliDash demonstrate scalable field deployment, integrating IoT diagnostics, hydraulic monitoring, and 

interoperable APIs. Key barriers include sensor drift, connectivity limitations, proprietary architectures, and the 

limited explainability of deep-learning models. Future directions emphasize interoperable data standards, 

trustworthy and uncertainty-aware AI, self-calibrating sensing systems, high-fidelity digital twins, and energy-

autonomous edge hardware. Collectively, these innovations position smart irrigation as a core enabler of climate-

resilient, resource-efficient agricultural water management. 

Keywords: Smart irrigation; Precision irrigation; IoT and LPWAN connectivity; Model predictive control; LSTM-

based forecasting; Fertigation management; Digital twin; Explainable AI. 
Copyright © 2025. This is an open-access article distributed under the Creative Commons Attribution License. 

 

INTRODUCTION 

     Agriculture remains the dominant global consumer of freshwater, accounting for approximately 70% of all 

withdrawals [1,2]. Climatic instability, recurrent droughts (Figure 1), shifting precipitation patterns, and accelerating 

groundwater depletion have tightened water constraints in many production regions. At the same time, rising energy 

costs for pumping and distribution, expanding urban demand, and deterioration in soil and water quality compound 

the challenge of meeting crop water requirements sustainably [1,19]. In many water basins, the combined effects of 

excessive water extraction and climate-induced variability are already causing groundwater levels to fall and 

environmental degradation to occur. 

Traditional irrigation methods, typically based on fixed schedules or manual operator judgment, lack the adaptive 

capacity to respond to real-time soil moisture fluctuations, plant stress indicators, and microclimate variations. Such 

approaches rarely incorporate real-time information on soil moisture, plant water status, or short-term weather 

forecasts. The resulting mismatch between crop water demand and irrigation supply often manifests as over-irrigation 

during stable periods (Figure 2) and under-irrigation during sensitive phenological stages, reducing yield potential, 

diminishing fertilizer-use efficiency, and increasing leaching losses [3,4,10]. 

Over the past decade, precision agriculture, IoT/LPWAN communication, cloud analytics, and AI/ML have converged 
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to form what is now widely recognized as smart irrigation systems [3–6,11,13]. These systems integrate multi-layer 

sensing of soil, plant, atmospheric, and hydraulic states with distributed computation and optimization. Time-series 

models predict evapotranspiration and soil moisture; fuzzy, Model Predictive Control (MPC), and Reinforcement 

Learning (RL) controllers generate adaptive schedules; anomaly detectors identify leaks, clogging, or sensor drift; and 

user interfaces translate complex system states into actionable insights [5–7,23,24,29]. As deployments scale from 

research plots to commercial orchards, greenhouses, and smallholder systems, smart irrigation is reshaping how water 

and nutrients are managed across diverse landscapes [3,8,11,12]. Despite a rapidly growing literature, existing reviews 

often examine sensing technologies, communication protocols, or AI algorithms in isolation [4-7,13,29], creating a 

fragmented understanding. Few studies integrate these components into a cohesive architecture and systematically 

connect technical advances with real-world hydraulic design, fertigation practices, and commercial platforms. 

Moreover, recent developments in digital twins, explainable AI, and energy-autonomous edge systems are only 

partially reflected in current syntheses [7,27,31,32,48,52]. 

This review addresses these gaps by providing an integrated analysis of sensing, communication, edge–cloud 

orchestration, and AI-driven control, alongside a quantitative synthesis of performance outcomes. It also outlines a 

research roadmap toward interoperable, trustworthy, and scalable smart irrigation ecosystems. 

 

 
Fig.1. World map illustrating the global water stress index and the share of agricultural water consumption 

 
Fig.2. Evolution of irrigation systems 

 

 

2. Scope and Review Methodology 

This review follows a structured protocol aligned with PRISMA 2020 guidelines [18] and recent methodologies 

employed in smart irrigation and digital agriculture reviews [4,5,13,29]. Figure 3 presents the PRISMA flow diagram 

illustrating the screening and selection process. The objective was to capture the technical, agronomic, and socio-
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economic dimensions of smart irrigation while maintaining coherence across sensing, connectivity, computation, and 

control components. 

Databases and Sources: Searches were conducted in Scopus, Web of Science, IEEE Xplore, ScienceDirect, 

SpringerLink, MDPI, Wiley Online Library, and Taylor & Francis Online, complemented by open repositories and 

industry documentation. This ensured adequate coverage of agricultural engineering, computer science, water 

resources, AI/ML, hydraulics, and commercial practice. 

Time Horizon: The primary window (2017–2025) reflects the period of rapid advancement in IoT/LPWAN and deep 

learning applications in agriculture. Foundational works such as FAO-56 were included to provide conceptual anchors 

for evapotranspiration modelling [1,2,19,20]. For emergent domains including digital twins and explainable AI, earlier 

sources were incorporated as needed [31,32,47,62]. 

Search Terms: Boolean strings combined keywords related to smart irrigation, IoT architectures, connectivity 

technologies, AI/ML forecasting and control, fertigation, anomaly detection, digital twins, and decision-support 

systems. 

Inclusion Criteria: Studies were included if they provided: 

 Experimental or modelling evidence on IoT/AI-enabled irrigation or fertigation with quantitative metrics [3–

7,10–17,21–24]. 

 Syntheses of architectures, sensing systems, communication technologies, or AI components [4–7,11,13–

15,29,30,61]. 

 Industry reports or case studies relevant to operating commercial smart irrigation platforms at scale [40–45]. 

Exclusion Criteria: Excluded materials included purely conceptual works without validation, non-agricultural IoT/AI 

applications without clear transferability to irrigation, and generic precision-agriculture reviews without irrigation-

specific analysis. 

Screening and Selection: Initial searches returned several hundred records. After screening, a corpus of over 150 

relevant documents was compiled. A representative subset of more than 60 high-impact sources was selected for 

detailed synthesis, with emphasis on the most recent contributions (2024–2025) [6,7,23,29,37,61–63]. 

 
Fig.3. PRISMA diagram 

 

 

3. Smart Irrigation Architecture: Layers, Functions, and Data Flows 

Smart irrigation systems operate through tightly coupled sensing, communication, intelligence, and actuation layers 

that convert environmental data into real-time water-management decisions. A fully integrated architecture typically 

includes: sensing and perception, connectivity and networking, edge/cloud intelligence, actuation and hydraulic 
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control, and supervisory management interfaces as illustrated . 

 

3.1. Sensing Layer 

The sensing layer quantifies soil–plant–atmosphere dynamics to support irrigation scheduling. Soil moisture remains 

the cornerstone parameter, monitored by probes such as Time Domain Reflectometry (TDR), Frequency Domain 

Reflectometry (FDR), capacitance sensors, tensiometers, and impedance devices [10,33]. Recent studies highlight the 

variability in sensor performance under field conditions, with low-cost sensors requiring systematic calibration to 

achieve acceptable accuracy [21]. Complementary measurements include soil temperature, electrical conductivity 

(EC), canopy temperature, sap flow, leaf turgor, NDVI-based vegetation indices, and microclimate variables such as 

air temperature, humidity, solar radiation, and wind speed [34]. 

Plant-based indicators have gained traction because they directly capture crop stress responses. Continuous canopy 

temperature measurement, dendrometry, and stem water potential sensing help refine crop water status estimation in 

orchards and specialty crops [34]. When integrated with remote sensing (satellite, UAV, multispectral imagery), the 

sensing layer expands its spatial coverage, enabling multi-scale decision making that is particularly useful for 

heterogeneous fields [9,35]. 

 

3.2. Communication Layer 

This layer transmits sensor data to edge gateways and cloud servers. Connectivity options range from local radio (Wi-

Fi, Bluetooth, ZigBee), long-range low-power networks (LoRaWAN, Sigfox), cellular networks (4G/5G/NB-IoT), 

and hybrid architectures [25,26]. In large fields, LoRaWAN remains the dominant choice because of its low-power 

operation, kilometer-scale range, and low operational cost. 

Communication reliability is a critical determinant of system performance. High packet loss or latency can disrupt 

decision-making workflows, particularly in feedback-based MPC or AI-driven systems. To mitigate these risks, multi-

channel redundancy, adaptive data-rate control, and gateway health monitoring are increasingly adopted in modern 

installations [27]. 

 

3.3. Edge–Cloud Intelligence Layer 

AI and machine learning algorithms transform raw data into actionable irrigation recommendations. This layer 

typically hosts: 

 ET estimation models including FAO-56 PM, hybrid feature-engineered ML models, and deep-learning 

architectures such as Long Short-Term Memory (LSTM), CNN-LSTM, and Transformer networks 

[1,2,19,20,39,64]. 

 Soil moisture forecasting using time-series ML and state-space models. 

 Crop water stress classification leveraging thermal imagery and vegetation indices. 

 Optimization and control algorithms, including model predictive control (MPC), fuzzy control, and 

reinforcement learning (RL) [37,53,54]. 

While cloud-based AI facilitates scalability through integration with extensive datasets (satellite imagery, weather 

reanalysis, multi-farm analytics), edge computing is critical for ensuring low-latency decision-making during time-

sensitive irrigation cycles [27]. Several studies demonstrate that AI-enhanced models improve water-use efficiency 

by 10–40% and enhance yield stability under variable climate conditions [5,6,7,14,56]. 

 

3.4. Actuation and Hydraulic Control Layer 

This layer executes irrigation decisions using pumps, solenoid valves, pressure regulators, fertigation injectors, and 

filtration units. Intelligent fertigation systems increasingly rely on variable-rate injection, real-time EC/pH monitoring, 

and inline flow sensing to maintain precise nutrient delivery [16,17,23,36]. The performance of this layer depends on 

robust hydraulic modeling, fault detection (e.g., pressure drops, clogged emitters), and automated shutdown protocols 

to prevent system failures. 

 

3.5. Supervisory Management Layer 

Farm managers interact with the irrigation system through dashboards, mobile applications, and SCADA-like 

interfaces. These platforms visualize soil moisture trends, ET forecasts, hydraulic parameters, alarms, and 

recommended actions [40–45]. Multi-site management, language localization, role-based access, and integration with 

ERP/FMS platforms are emerging requirements for commercial adoption. 
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Fig.4 System Overview & Dataflow 

4. Components, Placement, and Calibration 

Effective smart irrigation depends fundamentally on the correct selection, installation, and calibration of system 

components. A typical sensor suite is shown in Figure 7. Even advanced AI or optimisation algorithms cannot 

compensate for poor sensing quality, inappropriate placement, or misaligned hydraulic infrastructure. 

 

4.1 Soil Sensors 

Capacitance and TDR sensors estimate volumetric water content by measuring dielectric properties. Their accuracy is 

influenced by soil salinity, bulk density, and organic matter, often making manufacturer calibrations insufficient in 

heterogeneous soils. Field calibration using gravimetric sampling or laboratory-derived moisture curves improves 

accuracy. Multi-depth installation (e.g., 10–30–60 cm) helps distinguish shallow wetting, root-zone extraction, and 

deep percolation patterns [10,21]. 

 

4.2 Plant-Based Indicators 

Dendrometers capture diurnal stem diameter fluctuations, which correlate strongly with plant water status. Sap-flow 

sensors quantify transpiration directly, while infrared thermometry and thermal cameras detect early signs of stomatal 

closure. These measurements complement soil moisture data by integrating physiological responses to microclimatic 

and soil conditions [22,34]. 

 

4.3 Hydraulic Sensors 

Flowmeters and pressure transducers ensure that system hydraulics remain within design specifications. Monitoring 

pressure at key nodes validates the operating range of pressure-compensating emitters, while differential-pressure 

sensors across filters provide early warnings of clogging. Hydraulic data are also essential inputs for anomaly detection 

and predictive maintenance algorithms [21,22,28]. 

 

4.4 Fertigation Sensors 

Inline EC and pH sensors regulate nutrient dosing, especially in high-frequency drip and greenhouse systems. These 

sensors require frequent cleaning, calibration, and drift compensation. Emerging nitrate-specific sensors show promise 

but still face stability challenges under field conditions [16,17,23,36]. 

 

4.5 Placement Strategy 

Sensor placement must capture spatial heterogeneity in soil texture, topography, and management zones. In drip 

irrigation, soil sensors positioned between emitters avoid edge effects while accurately tracking root-zone dynamics. 

Orchards benefit from placement near the fringe of the wetted bulb, where both stress signals and deep percolation 

can be more effectively identified [3,4,10,22]. 

 

4.6 Calibration and Maintenance 

Calibration remains one of the most persistent bottlenecks in adoption. Soil probes should be validated regularly, 

particularly after soil disturbance or seasonal transitions. EC/pH probes require two- or three-point calibration to 

correct for drift. Periodic firmware updates, connectivity checks, and cross-validation against manual measurements 

preserve long-term data integrity. Research into self-calibrating sensors using embedded machine learning for drift 

detection represents a promising direction [27,55]. 
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Fig.5 Sensor Suite: soil moisture/temperature, tensiometer, inline pH/EC, filter ΔP 

5. Connectivity and Edge–Cloud Orchestration 

Reliable connectivity is essential for transforming sensor data into timely and accurate irrigation decisions. Figure 8 

illustrates a typical connectivity topology for an orchard deployment using LoRaWAN/NB-IoT, while Figure 9 shows 

an edge/AI cabinet housing the local computation and communication hardware. Agricultural environments, however, 

introduce challenges such as sparse cellular coverage, terrain variability, radio interference, and strict energy 

constraints on field devices. Smart irrigation systems therefore rely on robust communication architectures and careful 

allocation of computational workloads between edge and cloud layers. 

 

5.1 LPWAN Technologies 

Low-power wide-area networks (LPWAN) form the backbone of many field-scale deployments: 

 LoRaWAN provides long-range, low-energy communication ideal for battery–solar sensor nodes in orchards 

and open fields [3,11,25]. 

 NB-IoT and LTE-M operate on licensed cellular spectrum, offering reliable quality of service and broad 

coverage, though at the cost of higher energy consumption and subscription fees [26,37]. 

These technologies enable scalable sensing networks but must comply with duty-cycle restrictions and variable signal 

penetration in rural landscapes. 

 

5.2 Short-Range Technologies 

Short-range protocols are preferred in high-density or high-data-rate scenarios: 

 Zigbee/Thread and BLE support greenhouse and compact-field deployments [11,25]. 

 Wi-Fi enables image-based and high-frequency sensing but is energy-intensive and sensitive to interference 

[27]. 

Mesh topologies can extend range but may increase latency and reduce reliability for time-critical irrigation decisions. 

 

5.3 Protocols and Interoperability 

Data exchange depends on lightweight and interoperable communication protocols: 

 MQTT supports publish–subscribe telemetry and efficient command distribution [3,25,27]. 

 REST/JSON APIs provide compatibility with cloud services, weather platforms, and farm management 

applications [27,29]. 

 OPC UA, increasingly used in industrial contexts, enhances interoperability and semantic consistency across 

diverse devices [27,29,46]. 

Open standards are critical to avoid vendor lock-in and support modular system expansion. 

 

5.4 Edge–Cloud Workload Allocation 

Smart irrigation performance depends on a balanced task distribution between edge and cloud, a pattern increasingly 

emphasized in IoT, smart agriculture and cloud-computing reviews [11,25–27]. 

Edge Layer Responsibilities 

The edge executes time-critical and reliability-focused tasks: 

 Local rule-based or fuzzy-logic control algorithms for immediate irrigation decisions [53]. 

 Rapid anomaly detection for flow, pressure or sensor drift, where latency must be minimal [28,60]. 

 Fallback irrigation schedules ensuring safety during connectivity loss [11,25]. 
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 Data filtering, compression and temporary buffering to reduce transmission loads and energy consumption 

[27]. 

Edge computing ensures that irrigation continues safely even when cloud access is intermittent. 

Cloud Layer Responsibilities 

The cloud hosts computationally intensive and long-horizon functions: 

 Training of ML/AI forecasting models (soil moisture, ET, demand prediction) [5,6,23,29,30]. 

 Simulation and optimisation workflows, including digital-twin-based scenario testing [31,32]. 

 Multi-field or multi-farm resource allocation and cross-season analytics [7,27]. 

 Deployment of updated model parameters, firmware, or optimisation rules back to edge devices [27]. 

Hybrid orchestration reduces communication overhead, increases operational resilience and enables more advanced 

decision-support under real-world conditions. 

 

5.5 Resilience and Fail-Safe Operation 

Connectivity gaps are unavoidable in agricultural landscapes. Robust smart irrigation platforms therefore include: 

 Local data buffering and automatic cloud resynchronisation [11,25]. 

 Scheduled fallback irrigation to prevent crop stress during communication outages [28]. 

 Routine integrity checks for sensor drift and actuator condition [10,21,60]. 

 Safety interlocks preventing pump overload, emitter malfunction or pressure loss [22,28]. 

These mechanisms ensure that irrigation remains stable and secure even when individual sensors, nodes, or 

communication channels fail [70]. Having established the critical role of reliable data flow, the following section 

examines how machine learning transforms this data into intelligent irrigation decisions. 

 
Fig.6 Connectivity Topology: LoRaWAN / NB-IoT orchard deployment 

6. Machine Learning Methods for Smart Irrigation 

Machine learning (ML) has become a structural pillar of next-generation irrigation systems, enabling predictive, self-

optimizing, and adaptive decision-making far beyond static rule-based approaches. Figure 10 outlines a typical AI 

pipeline from training to inference, and Figure 11 depicts a hybrid control logic combining fuzzy logic, MPC, and 

constraint-based alerts. Figure 12 illustrates a closed-loop fertigation control system integrating pH and EC feedback 

for automated nutrient dosing. Recent systematic reviews confirm a rapid expansion of ML applications, including 

ET estimation, soil-moisture forecasting, crop stress detection, and fully autonomous irrigation scheduling 

[5,6,14,30,37,68]. 

 

6.1. ET and Soil-Moisture Prediction Models 

Accurate evapotranspiration (ET) estimation remains the core of data-driven irrigation planning. While FAO-56 

Penman–Monteith remains the agronomic benchmark [1,2,19], its reliance on full meteorological datasets limits 

applicability in data-scarce regions. To mitigate this, deep-learning models such as LSTM, CNN-LSTM, and 

Transformer architectures integrate limited weather data with historical ET patterns to achieve high predictive 

accuracy [20,39,64]. 
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Feature-engineering approaches, such as those reported by Považanová et al. (2023), demonstrate that hybrid ML 

models can outperform classical ET equations when trained on region-specific environmental variables [20]. 

For soil-moisture prediction, state-space models, sequence networks (e.g., LSTMs), and Gaussian process regressors 

are employed to forecast short-term dynamics. This capability supports proactive irrigation scheduling. Time-series 

ML frameworks have demonstrated accuracy improvements of 10–25% over physics-based moisture balance models 

in field deployments [6,37]. 

 

6.2. AI-Based Irrigation Recommendation Systems 

Integrated ML controllers translate predicted ET, soil moisture and crop stress into irrigation recommendations or 

automated valve operations. Major categories include: 

 Model Predictive Control (MPC): Uses soil–plant–hydrology dynamic models and constraints to determine 

optimal watering sequences. Demonstrated in sweet corn and greenhouse vegetable systems with significant 

water-use efficiency (WUE) gains [22,37,54]. 

 Reinforcement Learning (RL): Enables agents to discover irrigation strategies that maximize yield or 

minimize water use through exploration of dynamic environments. RL is increasingly adopted in multi-

objective scenarios where trade-offs involve WUE, energy consumption, and nutrient leaching [30,37]. 

 Fuzzy logic controllers: Effective in systems requiring interpretability and low computational load, 

especially for smallholder farms [53]. 

 Hybrid methods: Integration of ML predictions with agronomic rules, MPC constraints and remote-sensing 

indices to create robust, transferable decision engines [5,14,23]. 

 

6.3. Challenges in Model Deployment 

Despite progress, several limitations persist: 

 Generalization gaps: Models trained in one agro-ecological region fail when transferred to others due to 

soil-structure, canopy, and microclimate differences [14,68]. 

 Data scarcity: High-frequency labeled datasets remain limited, especially for plant-based stress indicators. 

 Explainability: Deep-learning models often lack interpretability, restricting adoption by practitioners. 

 Infrastructure constraints: Reliable connectivity and edge-computation capacity are essential for real-time 

ML-based scheduling [26,27]. 

These issues highlight the need for adaptive, transferable, and interpretable ML frameworks to support widespread 

adoption. 

 
Fig7 Closed-loop fertigation control system integrating pH and EC feedback for automated nutrient dosing. 

 

7. Digital Twins in Smart Irrigation 

Digital twins (DTs) represent a transformative paradigm that integrates real-time data, predictive modeling, and 

automated control. Predictive simulation models and control algorithms converge into a continuously updated virtual 

representation of fields, crops, and hydraulic systems. In agriculture, DTs extend beyond monitoring to encompass 

predictive diagnostics, scenario evaluation, and automated control [31,32]. 
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7.1. Digital Twin Architecture for Irrigation 

 Real-time sensor streams (soil moisture, microclimate, canopy temperature, flow/pressure). 

 Crop and hydrological simulation models (FAO-based ET, soil-water balance, root dynamics). 

 Predictive analytics and ML layers for forecasting crop stress, yield responses, and water consumption. 

 Control interface linking virtual recommendations to physical actuators (valves, pumps, fertigation units). 

These structures mirror industrial IoT paradigms but require substantial calibration and computational consistency 

when applied to biological systems [31]. 

 

7.2. Applications and Advantages 

Recent studies demonstrate major advancements: 

 Dynamic irrigation optimization: DTs evaluate hypothetical irrigation strategies before deployment, 

improving WUE and yield stability [31,46]. 

 Failure detection: Hydraulic anomalies (leaks, clogging, pump inefficiencies) are detected earlier through 

virtual–physical mismatch analytics. 

 Scenario simulation: DTs assess effects of extreme weather, salinity shifts, and fertigation strategies in 

virtual environments, thus reducing economic risk. 

 Training and decision-support: DTs support agronomists by revealing system behavior over multi-season 

horizons. 

 

7.3. Current Limitations 

Despite strong potential, barriers remain: 

 High data requirement: Digital twins require dense, calibrated sensor networks and historical datasets 

[32,62]. 

 Lack of standardization: Interoperability across vendors and platforms remains limited. 

 High computational load: Real-time simulation of soil–plant–atmosphere processes remains expensive. 

 Adoption gap: Smallholders lack financial and technical capacity for DT deployment [52]. 

Continued advances in edge computing, low-cost sensors, and unified data standards are likely to accelerate adoption. 

 

8. IoT-Based Smart Irrigation Infrastructures 

IoT infrastructures provide the backbone for data acquisition, communication, and automated control within smart 

irrigation ecosystems. The shift from isolated sensor networks to fully integrated IoT platforms mirrors developments 

in other industrial cyber–physical systems. Figure 13 presents a hydraulics map showing pressure/flow monitoring 

and pressure-compensating laterals, while Figure 14 exemplifies user-interface dashboards for zone-based 

management and trend visualization. 

 

8.1. Network Architectures 

Smart irrigation deployments typically use multi-tier IoT architectures consisting of: 

 Device layer: Battery-powered soil sensors, weather stations, flow meters, fertigation injectors, UAVs, and 

camera nodes [9,11,21]. 

 Gateway layer: Aggregates data via LoRaWAN, Wi-Fi, NB-IoT, or hybrid configurations [25,26]. 

 Cloud/edge layer: Performs ML-based analytics, hydraulic modeling, and decision algorithms [27]. 

 Actuation layer: Executes irrigation commands with remote valve control, pump automation, and fertigation 

dosing. 

 

8.2. Communication Technologies 

Communication reliability is critical for continuous irrigation scheduling: 

 LoRaWAN: Most widely adopted for large farms due to its long range and low battery consumption [25]. 

 NB-IoT / LTE-M: Provides higher bandwidth and reliability for dense sensor deployments [26]. 

 Hybrid networks: Combine satellite-backed communication with LoRaWAN for remote regions with 

limited terrestrial coverage. 

IoT fault-tolerance remains an issue: node dropouts, gateway overloads, and radio interference can degrade system 

performance. Robust IoT deployments therefore include redundancy, self-healing routing, and adaptive transmission 

strategies. 
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8.3. IoT–AI Fusion for Autonomous Irrigation 

Emerging IoT frameworks embed AI at multiple layers: 

 Edge AI for real-time scheduling in latency-sensitive irrigation cycles [27]. 

 Cloud-based predictive analytics, integrating remote-sensing imagery and multi-field datasets [11,30]. 

 Anomaly detection systems identify irrigation failures using deep-learning pipelines trained on flow, 

pressure, and soil-moisture patterns [60]. 

 

8.4. Adoption Barriers and Practical Considerations 

Widespread adoption faces: 

 Cost constraints, especially in low-income agricultural regions. 

 Maintenance challenges, including sensor recalibration, battery replacement, and connectivity 

troubleshooting. 

 Digital literacy gaps, limiting effective use of dashboards and configuration tools [52]. 

These issues necessitate simplified UIs, reliable vendor support, and scalable pricing models. 

 
Fig.8 Hydraulics Map (pressure/flow; PC laterals) 

 

9. Performance Synthesis: Water, Yield and Economic Outcomes 

A growing body of empirical evidence demonstrates that the integration of sensor networks, IoT/LPWAN 

connectivity, and AI-driven decision-support substantially improves irrigation and fertigation performance across 

diverse production systems. Figure 15 summarizes the reported water savings and yield deltas across multiple studies. 

Results converge on three main outcomes: reduced water use, greater yield stability, and enhanced resource-use 

efficiency [3,4,10,17,22,28,69]. 

 

9.1 Water Use 

Across open-field crops, orchards, and greenhouse operations, AI or sensor-guided irrigation typically reduces water 

application by 15–40%, with higher reductions reported when the baseline practice is flood or furrow irrigation. When 

farms also transition from surface irrigation to pressurised systems (drip or micro-sprinkler), total water savings may 

reach 25–60%, depending on crop type, climate, and soil properties. These savings are primarily attributed to more 

precise irrigation timing, reduced deep percolation, improved spatial water distribution uniformity, and the avoidance 

of unnecessary irrigation during periods of low evapotranspiration demand. 

 

9.2 Yield and Quality 

Yield responses vary by crop sensitivity and environmental conditions. Many studies document 5–20% yield gains, 

especially in crops where water stress during critical phenological stages impacts fruit set or biomass accumulation. 

Even when yields remain stable, water-use efficiency (WUE) improves substantially. Enhanced fruit quality—size, 

firmness, soluble solids, and uniformity—is frequently attributed to tighter control of soil moisture dynamics 

[16,17,22,28,69]. 

 

9.3 Nutrient Use and Environmental Impact 

Closed-loop fertigation strategies often maintain or increase yields with lower fertilizer inputs, improving nutrient-

use efficiency (NUE). Optimised nutrient timing reduces nitrate leaching, mitigates salinity accumulation, and limits 

off-site nutrient transport, especially in drip and greenhouse systems where root-zone salinity is a critical constraint 
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[16,17,23,36]. 

 

9.4 Economic Feasibility 

Economic benefits are strongest in high-value horticulture and protected cultivation, where water, labour, and fertilizer 

savings shorten payback periods to 2–4 years. For smallholders, economic constraints remain significant, 

underscoring the need for subscription-based, cooperative, or subsidised models to broaden adoption [48,52]. 

 

10. Industrial State-of-Practice 

Commercial smart irrigation platforms have advanced rapidly, integrating multi-source sensing, hydraulic monitoring, 

and AI-driven analytics into unified systems. Figure 16 provides an industry mapping that aligns leading platforms 

(NetBeat, Manna, IQ4, IntelliDash) with the component stack described in Sections 3–5. These platforms 

operationalise research concepts at scale and highlight industry priorities such as reliability, remote diagnostics, 

alarm workflows, and system interoperability. 

Netafim NetBeat® 

NetBeat integrates soil probes (e.g., Sentek), weather-analytics tools (e.g., Arable), and crop-specific models to 

generate irrigation and fertigation recommendations. It supports cloud dashboards, mobile interfaces, hydraulic 

monitoring, and API-based integration with farm-management tools [40,41]. 

Rivulis Manna 

Manna is positioned as a "sensor-less" irrigation intelligence system by relying on satellite imagery, local weather, 

and crop models instead of large in-field sensor deployments. This makes it suitable for regions where hardware 

installation is challenging [42]. 

Jain AquaSphere 

AquaSphere combines sensor networks, remote sensing, and agronomic advisory services, emphasising multi-zone 

irrigation and fertigation in high-value horticulture [43]. 

Rain Bird IQ4 

Originally developed for turf/golf irrigation, IQ4 offers centralised hydraulic modelling, multi-site management, and 

robust industrial control. Its SCADA-like capabilities are increasingly used in agricultural settings [44]. 

Toro IntelliDash & Lynx 

These systems integrate hydraulic modelling with analytics and scheduling logic, originally for landscaped assets but 

now expanding into intensive agriculture [45]. 

Industrial Trend 

Despite architectural differences, these platforms share common design principles: modularity, high uptime, 

diagnostics, multi-language user interfaces, and open APIs. Ongoing mergers and acquisitions suggest further 

consolidation and increased emphasis on interoperability across systems. 

Across these leading platforms, system architectures closely parallel the layered framework described in Sections 3–

5. Common design principles include robust IoT/LPWAN connectivity, hybrid edge–cloud computation, 

comprehensive alarm workflows, predictive diagnostics, multi-language user interfaces, and growing emphasis on 

SCADA/ERP interoperability. The rapid consolidation occurring within the irrigation industry indicates 

that interoperability, open standards, and modular integration will become defining characteristics of next-

generation smart irrigation ecosystems. 

 

11. Digital Twins, Explainable AI and Energy-Autonomous Edge Systems 

11.1 Digital Twins 

Digital twins (DTs) provide dynamic representations of soil–plant–atmosphere–irrigation systems, continuously 

updated using sensor data. Unlike static models, DTs enable scenario testing (e.g., deficit irrigation), allow safe 

training of MPC or reinforcement learning (RL) agents, and provide benchmarking of real-time performance 

[31,32,46]. Key challenges include uncertainty propagation, multi-scale coupling, and validation against independent 

field measurements. Figure 17 highlights security and power considerations, showing a typical weather-resistant 

enclosure and power-management practices for field deployments. 

 

11.2 Explainable and Trustworthy AI 

As ML-based systems influence operational decisions, transparency becomes essential. Explainable AI (XAI) tools—

SHAP, LIME, rule extraction, and attention maps—help users understand how recommendations are generated. These 

tools support model debugging, agronomic validation, and user trust while enabling compliance with emerging ethical 

guidelines for agricultural AI [47]. 
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11.3 Energy-Autonomous Edge 

Field devices depend on small solar panels and batteries; thus energy autonomy is a core design constraint. Approaches 

include low-power electronics, adaptive sampling, event-driven communication, compressed telemetry, and hybrid 

solar-wind harvesting [27]. These strategies reduce maintenance needs and support long-term reliability in remote 

deployments. 

12. Challenges and Adoption Barriers 

Despite promising technical progress, several barriers hinder widespread adoption: 

12.1 Sensor Reliability 

Sensor drift, fouling, salinity sensitivity, and calibration requirements limit long-term accuracy. Inconsistent data 

reduces model performance and erodes user confidence [21]. 

12.2 Connectivity Limitations 

Coverage gaps, radio interference, and LPWAN duty-cycle restrictions can disrupt time-critical communication. 

Hybrid connectivity and edge-first logic help manage outages but do not eliminate them entirely [70]. 

12.3 Economic & Operational Constraints 

High upfront investment, subscription fees, and technical complexity reduce adoption among smallholders. Systems 

requiring specialised installation or maintenance face stronger resistance [48,52]. 

12.4 Interoperability & Lock-In 

Closed protocols and proprietary hardware limit the ability to integrate third-party sensors or controllers. Standardised 

data models and open APIs are essential to avoid vendor lock-in. 

12.5 Data Governance & Trust 

Concerns about ownership, privacy, monetisation, and cloud dependence influence adoption. Transparent data policies 

and user control over data sharing are critical. 

13. Research Roadmap 2025–2030 

Emerging scientific trajectories and industry needs suggest the following priorities for the next decade: 

Interoperability & Open Data Standards 

Widespread adoption of MQTT/JSON, OPC UA, shared ontologies, and plug-and-play sensor standards. 

Trustworthy, Explainable AI 

Models with explicit uncertainty quantification, interpretable structures, and farm-centric explanation interfaces. 

Self-Calibrating Sensor Systems 

Embedded ML for drift detection, auto-calibration, and cross-validation with reference sensors. 

High-Fidelity Digital Twins 

Field-to-basin scale DTs integrating mechanistic, data-driven, and remote-sensing components with multi-objective 

optimisation capability. 

Energy-Autonomous Edge Hardware 

Ultra-low-power processors, intelligent duty cycling, and hybrid energy harvesting for multi-year operation without 

manual maintenance. 

Socioeconomic & Policy Innovation 

New business models (Irrigation-as-a-Service), cooperative sensor ownership, capacity building, and targeted 

subsidies for smallholders. 

Integrated Water–Nutrient–Energy Management 

Unified platforms that coordinate irrigation, fertigation, and renewable-energy-driven pumping. 

 

Conclusions 

      Smart irrigation has evolved from isolated experimental systems into a mature technological domain capable of 

delivering significant water savings, stabilising or enhancing yield, and reducing environmental impacts. These 

advances stem from the convergence of multi-source sensing, IoT/LPWAN connectivity, edge–cloud analytics, and 

AI-driven control. 

The next generation of systems will depend on: 

 improved sensor robustness, 

 open and interoperable data ecosystems, 

 trustworthy and explainable AI, 

 validated digital twins, 

 energy-autonomous field hardware, 

 inclusive and financially accessible deployment models. 
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As climate variability intensifies and water scarcity deepens, smart irrigation will become a foundational element of 

sustainable intensification—enhancing productivity while reducing environmental pressure and strengthening 

agricultural resilience. 
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أنظمة الري الذكية: مراجعة شاملة لتقنيات إنترنت الأشياء والذكاء الاصطناعي والزراعة 

 المستدامة
 3سكالا سلام عثمان                          2حسين ظاهر طاهر                  1ناز محمد غازي

 6زجيم كوركما             5مراد عبدالله عبدالقادر          4داليا ايدن هاوار
 .قسم المكننة والمعدات الزراعية، كلية الزراعة، جامعة كركوك، كركوك، العراق 1-2
 .قسم علوم التربة والموارد المائية، كلية الزراعة، جامعة كركوك، كركوك، العراق 3

 .كلية النباتات الطبية والصناعية، جامعة كركوك، العراق 4
 .ليةلجامعة التقنية الشماا -الجامعة التقنية الصحية والطبية، كركوك  5

 قسم هندسة الآلات والتكنولوجيا الزراعية، كلية الزراعة، جامعة تشوكوروفا، أضنة، تركيا 6

 الخلاصة

أحدث التطورات ض هذا البحث أصبحت أنظمة الري الذكية ضرورية للتخفيف من ندرة المياه، وتقلبات المناخ، وارتفاع تكاليف الطاقة في الزراعة الحديثة. يستعر        

ن من والتي تمُك   ، وأطر الذكاء الاصطناعي الهجينة بين الحوسبة الطرفية والسحابية،LPWAN في مجال الاستشعار متعدد المصادر، وربط إنترنت الأشياء/شبكات

 2017الفترة من  اهمات ذات الأثر الكبير خلالدراسة، مع التركيز على المس 150على أكثر من  PRISMA تحسين الري والتسميد في الوقت الفعلي. طبُقت منهجية

وكفاءة ظ على المحصول % مع الحفا40-15. تظُهر النتائج أن الجدولة المدعومة بالذكاء الاصطناعي وأجهزة الاستشعار تقُلل عادةً من استهلاك المياه بنسبة 2025إلى 

، RF ،XGB ،LSTM ،CNN-LSTM) استخدام العناصر الغذائية أو تحسينهما في أنظمة الحقول المفتوحة والبساتين والبيوت الزجاجية. تحُس ن نماذج التعلم الآلي

Transformer) واستراتيجيات التحكم (MPC ،RLبشكل كبير من تقدير التبخر النتحي، والتنبؤ برطوبة )حالات الشاذة، والتحكم التربة، واكتشاف ال ، المنطق الضبابي

 Toro IntelliDashو Rain Bird IQ4و Jain AquaSphereو Rivulis Mannaو ®Netafim NetBeat الآلي في الصمامات. تظُهر منصات تجارية مثل

قة. تشمل العوائق الرئيسية ية، وواجهات برمجة التطبيقات المتوافإمكانية نشرها ميدانياً على نطاق واسع، حيث تدمج تشخيصات إنترنت الأشياء، والمراقبة الهيدروليك

ر البيانات المتوافقة، والذكاء يانحراف المستشعرات، ومحدودية الاتصال، والبنى الاحتكارية، ومحدودية تفسير نماذج التعلم العميق. تركز التوجهات المستقبلية على معاي

الطاقة. مجتمعةً، ترُس خ هذه  مة الاستشعار ذاتية المعايرة، والتوائم الرقمية عالية الدقة، والأجهزة الطرفية المستقلة عنالاصطناعي الموثوق والواعي بالشكوك، وأنظ

 .ر المناخيالابتكارات مكانة الري الذكي كعامل تمكين أساسي لإدارة المياه الزراعية بكفاءة عالية ومرونة في استخدام الموارد، بما يتناسب مع تغ

 

إدارة التسميد  ، LSTMم على التنبؤ القائ، التحكم التنبؤي القائم على النموذج، LPWANاتصال إنترنت الأشياء وشبكات  ، الري الذكي؛ الري الدقيق: لمات المفتاحيةالك

 .الذكاء الاصطناعي القابل للتفسير ،التوأم الرقمي، بالري


