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ABSTRACT

Wetlands are special ecosystems providing crucial hydrological, ecological, and socio-economic services. The
study investigates the long-term development of the Hammar Marsh in Irag from 2000 to 2025, focusing on water
level trends and the driving environmental forces of the changes. Remote sensing imagery is analyzed using Google
Earth Engine to obtain monthly water surface areas and other key climatic and ecological variables. Mann—Kendall
test and Sen's slope estimator were applied to detect significant trends in water level, and there was an overall
increase, with summer and autumn being particularly so, while winter and early spring had slower changes.
Stepwise Variance Inflation Factor (VIF) analysis was performed to reduce multicollinearity among predictors so
that all remaining variables had VIF values below 10. A Random Forest model was then executed to infer the
relative importance of environmental drivers. The model exhibited test set R? of 0.690 and RMSE of 0.154,
indicating good predictability. Calculation of the variable importance indicated that the Palmer Drought Severity
Index (PDSI) and soil moisture were the dominant controlling factors of water level change, followed by vegetation
cover (NDVI) and land surface temperature (LST), with the other variables of precipitation, vapor pressure, wind
speed, runoff, and aerosol optical depth having secondary effects.
The results highlight the synergistic effects of climatic and hydrological drivers on wetland dynamics and
demonstrate the effectiveness of integrating remote sensing, trend analysis, and machine learning for wetland
monitoring. The outcomes of this study have significant implications for the sustainable management and
conservation of Hammar Marsh and other similar wetland ecosystems in the face of changing environmental
conditions.
Keywords: Wetlands, Remote Sensing, Hydro-climatic Drivers, machine learning, NDVI..
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INTRODUCTION

Wetlands are among the most vital ecosystems on earth, providing a range of ecological, hydrological, and socio-
economic benefits [1,2,3,4]. They play an important role in climatic regulation [5], conservation of biodiversity [6,7],
ecosystem balance maintenance [8], water purification [9], carbon fixation [10,11], medicinal resource supply, and
tourism. Though they cover just a fraction of the Earth's surface, wetlands are of unequal importance in supporting
ecological equilibrium and human well-being [12]. They alone cover millions of square kilometers in Asia, and are
among the most widespread and diverse ecosystems in the region [13].
Wetlands are increasingly facing threats from human activities and natural processes. Population growth, rapid urban
development, and climate change impacts have triggered massive degradation and continuous loss of wetland cover
[14,15,16,17].
Remote sensing, as such, has proven to be one of the most effective and efficient tools for monitoring and evaluating
wetlands [18]. In addition to remote sensing, machine learning approaches have recently shown remarkable
capabilities in analyzing complex hydrological and environmental systems. Several studies have employed hybrid and
data-driven models to predict water level fluctuations, drought indices, and ecosystem responses with high accuracy
[19,20,21]. For instance,[22] demonstrated that combining Random Forest and LSTM models with PCA and stepwise
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regression provided highly accurate predictions of river water quality parameters in arid regions, highlighting the
robustness of hybrid ML approaches for hydrological and environmental modeling. Due to the fact that it provides
consistent, historical, and large-scale information without spatial limits, remote sensing enables the accurate
monitoring of significant wetland resources, like water, vegetation, and soil [23,24]. This technological approach,
besides supporting improved understanding of wetland dynamics, also assists in supporting decision-making for the
conservation, restoration, and sustainable management of these valuable ecosystems [25,26].

Wetlands have significantly evolved over the last decades as a result of climatic variability, terrestrial characteristics,
and increasing human-induced stress [27]. Therefore, long-term and repetitive monitoring is key to establishing
whether these ecosystems are augmenting, stable, or degrading, and to guiding conservation and restoration efforts.
However, due to the complex interlinkage of wetlands with their surrounding environment drivers, the identification
of the most important drivers that influence their dynamics becomes particularly essential for significantly sensitive
or very degraded systems [28,29,30]. Many factors control the expansion or shrinkage of wetlands, including climatic
conditions (rainfall, temperature, evapotranspiration, drought) [31], hydrological drivers (river discharge, groundwater
level, catchment inflow) [32], and terrestrial drivers (soil moisture, vegetation cover, topography) [23]. In addition,
anthropogenic drivers such as land use and land cover change, agricultural intensification, urbanization, and
industrialization further aggravate wetland loss and fragmentation [33,34,35]. Quantifying and ascertaining the
relative contribution of these natural and anthropogenic parameters are essential to rational conservation planning,
sustainable management, and fostering adaptive capacity of wetlands in the face of persisting environmental change.
In research on trends in a wetland, various factors are considered. Some research focuses on ecological degradation,
while others research water level trends, and others look at soil cover and vegetation cover. [36] estimated spatial and
temporal wetland degradation trends in Jiangsu Province, China, from 1980 to 2020 using remote sensing data and a
landscape directional succession model. Their research showed that 3,020.67 km?2 (42.74% of the overall coastal
wetland coverage) of the wetlands deteriorated, with overall degradation being characterized as mild in character.
Degradation was higher in Yancheng City, mostly covering Sheyang County, Dafeng District, Dongtai City, and
Rudong County. The trend was cumulative, and the overall degradation score rose from 0.45 in 1985 to 1.67 in 2020,
with a maximum in 2000. The major forms of degradation were conversion to construction land, fish farming, arable
land, and invasion by exotics. The study focuses on imposing stricter controls over wetland development to ensure
sustainable management and long-term conservation.[37] summarized recent advances in satellite remote sensing of
wetland ecosystems in Sub-Saharan Africa, highlighting the fundamental role of wetlands as highly productive
ecosystems that accommodate numerous plants and animals. While they are of significant ecohydrological
importance, wetlands here are gravely threatened by global environmental change and anthropogenic pressures,
particularly poor management practices leading to overexploitation and underutilization. The lack of regular
monitoring and up-to-date spatial information has limited data on the wetland loss rates and effective management.
The study brings out the fact that remote sensing is an effective means of accurate mapping, monitoring, and
documentation of past and present wetland state. Likewise, other researchers have highlighted that integrating artificial
intelligence and hybrid modeling techniques enhances the understanding of wetland degradation patterns and
hydrological dynamics, offering complementary insights to remote sensing analyses [38,39]. Satellite observation
delivers spatially explicit and temporal data, which enables better understanding of ecohydrological processes,
wetland dynamics, and state of the environment as well as focusing on challenges and limitations involved with such
an approach.

[40] analyzed wetland and watershed degradation in the Tabunio Watershed using multi-temporal remote sensing and
a high-resolution land degradation index. The study monitored spatial and temporal land degradation from 2005 to
2020 based on a mixture of land use/land cover, vegetation coverage, soil erosion, and soil moisture content. The
projected index was considerably precise (kappa > 0.73, overall accuracy > 86%) and provided a better assessment
than isolated indices. Results showed an overall pattern towards higher degradation of land, with 2010 being the worst
year and most of the other years having moderate degradation. Key drivers for degradation were reduced water uptake,
flooding during the rainy season, dry season droughts, and impacts from conventional gold mining operations. The
study emphasizes that advanced monitoring methods like the integrated land degradation index have important roles
in sustainable management, early detection, and protection of valuable watershed areas with freshwater resources.
[41] sought to characterize and monitor wetlands in Pakistan using satellite remote sensing and emphasizing important
parameters like wetness, greenness, turbidity, temperature, and landscape changes. Despite wetlands receiving
international recognition and value through initiatives like the Ramsar Convention, a majority of wetlands in less
developed nations remain under-valued. Supervised classification and TCW index were employed by this research to
classify wetlands, and change detection indices, TCG, and NDTI were utilized to detect water quality, ecological, and
climate-related effects. 2016-2019 Sentinel-2 imagery, along with ASTER DEM and MODIS LST data, was applied
for spatial and hydrological analyses and complemented by rainfall data from ANN databases. Small but notable
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alterations in water fractions of large lakes such as Borith, Phander, Upper Kachura, Satpara, and Rama Lake were
depicted in outcomes, indicating ongoing ecological transformations. The study emphasizes the strong need for
proactive conservation measures to conserve wetlands and enhance ecosystem dynamics against environmental
stress.[42] discussed multiscenario degradation in the Maidika Alpine Wetland Nature Reserve, Qinghai—Tibet
Plateau, using Landsat time series data. The study developed an AW-CCD, a continuous degradation detection and
classification algorithm that integrates spectral-temporal characterization, classification, and degradation detection to
map alpine wetland dynamics. The method detected water-related landscape change, like snowmelt, lake and river
contraction, and swampy meadow to alpine meadow transition with decreased soil wetness. Using spectral-temporal
indices and seasonally varying soil wetness, AW-CCD enabled yearly wetland mapping and multiscenario degradation
assessment. Results indicated better mapping precision (94.9% in 2022) and demonstrated spatial-temporal patterns
of degradation across two decades: snow and river regions lost 5.04% and 16.74%, respectively, and 3.23% of swamp
meadows were transformed into alpine meadows. Degradation was strongest prior to 2009, followed by relative
stability up to 2015, and subsequent degradation. The study confirms the applicability of AW-CCD in the valuation
of the complex responses of alpine wetlands to climate changes in high-mountain ecosystems.

Investigation in this field has also been further conducted by other scholars, including: [43,44].

Based on the existing scientific literature, numerous studies have examined wetland degradation and dynamics from
perspectives of hydrological change, vegetation cover change, and impacts of human activities. The primary goal of
this present study, however, is to examine the trends of the water level of a selected wetland in Irag, whether its levels
rise or fall with time, and identify the leading environmental drivers of these trends. This study is run on a suite of
climatic parameters in conjunction with advanced machine learning techniques in the form of the Random Forest
algorithm to enable a firm and data-driven assessment of the drivers of wetland dynamics over time. This research
endeavors to have a better understanding of processes that shape wetland activity as well as provide insight into
sustainable management and conservation strategies.

Materials And Methods
2-1-Study area

The research location in this study is the Hammar Marsh, which is one of the three great marshes originally making
up the extensive and diverse Mesopotamian marshes of south Irag, along with the Central Marshes [45] and Hawizeh
Marsh [46] (Figure 1). The three marshes are designated Ramsar Sites and are internationally conserved. Historically,
Hammar Marsh covered up to 4,500 km? at seasonally elevated water. Enormous drainage in the early 1990s, together
with the construction of roads, canals, and embankments, largely transformed the natural condition. Re-flooding and
restoration of works in the 2000s partially recovered water levels and biodiversity. Flood control, water storage and
filtration, and climate regulation services are provided by the marsh ecosystem. It is home to globally threatened
species such as the endangered Basra reed warbler (Acrocephalus griseldis) and the marbled duck (Marmaronetta
angustirostris), besides the vulnerable Mesopotamichthys sharpeyi and Euphrates softshell turtle (Rafetus
euphraticus). Redbelly tilapia (Tilapia zillii), a non-native and invasive fish, is the most prominent fish species.
Hammar Marsh is also of great historical and cultural significance, as the resources of the Marsh Arab indigenous
community are being used for building special floating houses and perpetuation of their traditional way of life. The
main economic activities are fishing, hunting, and agriculture, while in recent decades increasing oil exploration has
been taking place. The ecological, cultural, and economic value of Hammar Marsh, as well as its Ramsar designation,
highlights the significance of continued monitoring and sustainable use of this critical wetland
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Figure 1: Study area of the Hammar Marsh wetland

2-2-Data and Process

Within this research, all analysis and calculations were conducted on the Google Earth Engine (GEE) platform,
offering access to an extensive array of satellite products alongside robust cloud-based geospatial processing features
[47]. The employment of GEE enabled us to process large datasets of multi-temporal data with ease and maintain data
consistency in handling and reproducibility of the findings. In order to examine the Hammar Marsh dynamics, the
water surface area was approximated from MODIS MODO09A1 product with the help of Normalized Difference Water
Index (NDWI) (eql).

NDWI = Green — NIR Fo1
" Green + NIR (Eq.1)

NIR and Green in this context denote near-infrared and green respectively [48]. Water bodies were also identified
through positive NDWI, and their covered areas were approximated every month for each wetland.

Monthly water surface area values for the 2000 to 2025 time period were extracted, providing time-series perspective
on hydrologic wetland modification. Concomitant with surface water monitoring, additional climatic and
environmental variables were integrated to enhance knowledge of their contribution to forcing wetland fluctuations.
Vegetation change was monitored in particular through use of the Normalized Difference Vegetation Index (NDVI,
MOD13Q1), and thermal regimes were approximated from Land Surface Temperature (LST, MOD11A2). Climate-
related drivers were precipitation (CHIRPS), aerosol optical depth (AOD, MCD19A2), and certain variables of the
TERRACLIMATE dataset, namely actual evapotranspiration (AET), reference evapotranspiration (PET), wind speed
(WS), vapor pressure (VAP), soil moisture, Palmer Drought Severity Index (PDSI), and runoff (R). These datasets as
a whole constitute a rich basis for understanding hydrological and ecological variability of the study region on season
as well as interannual timescales. The specifications in terms of detail of the datasets, including their sources, spatial
and temporal resolution, and study duration, are listed in Table 1.

Table 1: Specifications of the sensors and datasets used

Variable Sensor Units SR
NDWI(WA) MODO09A1 500m
NDVI MOD13Q1 250m
LST MOD11A2 Kelvin 1000m
Precipitation (P) CHIRPS mm 5566m
Aerosol Optical Depth (AOD) MCD19A2 1000m
Actual evapotranspiration (AET) TERRACLIMATE mm 4638m
Reference evapotranspiration (PET) TERRACLIMATE mm 4638m
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Wind Speed (WS) TERRACLIMATE m/s 4638m

Vapor pressure (VAP) TERRACLIMATE kPa 4638m
Soil moisture TERRACLIMATE mm 4638m
PDSI TERRACLIMATE 4638m

Runoff (R) TERRACLIMATE mm 4638m

2-3-Method
The method of research employed in this study consists of five principal stages (figure 2).

1-

2-

3-

Preprocessing and temporal harmonization: All data were cleaned and resampled to monthly temporal
frequency since each of the data sets was initially provided in several alternative temporal resolutions.

Data standardization: To ensure comparability between variables and reduce the impact of scale differences,
all data sets were standardized prior to analysis.

Trend Analysis using the Mann—Kendall Test: The MK test was employed to detect monotonic trends in the
time series of wetland water level. As a non-parametric test, it is not affected by non-normality and outliers
and hence can be used for long-term hydrological data. MK test was utilized in this study work for monthly
water level data (2000-2025) to determine the direction and statistical significance of change with time.
Multicollinearity test (VIF test): The Variance Inflation Factor (VIF) was applied to identify and remove
highly correlated variables to ensure model stability and interpretability.

Machine learning modeling (Random Forest): The Random Forest algorithm was employed to simulate
wetland water level behavior, evaluate model performance, and estimate the relative importance of every
explanatory variable.

Data preprocessing and temporal
harmonization

Data standardization

Trend Analysis using the Mann—Kendall
Test

Multicollinearity assessment

Machine learning modeling

Gini importance value

Figure 2: Flowchart of the methodology used in this study
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2-3-1- Data preprocessing and temporal harmonization

All the preprocessing was performed within the Google Earth Engine (GEE) environment. Since the data sets applied

in this study had different temporal resolution, they were resampled and reinitialized into their actual temporal

resolutions in order to maintain the subsequent monthly analysis consistent.

2-3-2- Data standardization

Standardization is a significant step in the preprocessing process, especially when working with mixed variables that

differ in scale and unit. This operation minimizes differential measurement range bias and ensures all variables

contribute equally to the analysis [49]. Additionally, it facilitates improved collinearity tests and enhances the

robustness of machine learning models. All variables in this study were standardized through Equation (2) to enable

a fair comparison and integration of the datasets.
Xi_p

Z; = (Eq.2)

In the formula above, Z; is the standard score for data X, p is the mean and o is the standard deviation of the data. By

doing this, the Z;'s will have a mean of 0 and a variance of 1.

2-3-3- Trend analysis

There are many statistical procedures which can be employed to analyze time series, but non-parametric methods are
particularly effective to use when dealing with hydrological and meteorological data [50]. These methods have a
number of benefits since they do not rely on the statistical distribution of the dataset and are effective for those series
that exhibit skewness or unpredictable fluctuations [51]. Trend analysis in this case aims at determining whether a
dataset has a consistent rise or decline trend over time. The Mann—Kendall test is one of the most common non-
parametric tests for this purpose [52]. It is based on two hypotheses: under the null hypothesis, the data series is trend-
free and random, and under the alternative hypothesis, the data series has a monotonic trend [53]. The methodology
lies in the calculation of the S statistic, which tests the difference between all observations and all subsequent
observations, as presented in Equation (3).

n-1 n
S = Z sgn(x; — Xg) (Eq.3)
k=1 j=k+1
In this formula, n is the number of observations in the time series, and xj and xk are the j-th and k-th data points of the
series, respectively. Then, the variance of S is calculated and the standardized Z statistics are calculated using
equations (2) and (3):

VAR(S) = % [n(n —1)(2n + 5)] (Eq.4)
S—1
e if S>0
JVAR(S) ez
z={0 ifS=0 (Eq.5)
i ifS<0
L/VAR(S)

In a two-sided trend analysis, the null hypothesis (Ho), which assumes that the data series has no trend, is retained if
the condition | Z | < Za/2 i satisfied at a 95% confidence level. If this condition is not met, the alternative hypothesis
(H4), indicating the presence of a trend, is accepted. Positive Z values represent an increasing trend, while negative Z
values indicate a decreasing trend in the dataset.
To estimate the trend rate in a time series, the Sen's Slope estimator is commonly used. This non-parametric method,
originally proposed by Theil and later refined by Sen, calculates the slope based on the differences between all pairs
of observations in the series. It is particularly suitable for detecting linear trends, where the trend value at time t can
be expressed as:

f(t) =Qt+B (Eq.6)
Where Q is the slope of the trend line and B is the constant value.
2-3-4- Multicollinearity Analysis (VIF)
Collinearity is when an independent variable in a regression equation has a high correlation with one or more other
independent variables and essentially becomes a composite of them. When there are interdependent predictors, it is
called multicollinearity [54]. Multicollinearity reduces the reliability of the findings of a regression, as it is difficult
to determine individual effect of each variable on the dependent variable. This usually causes excessive variances of
estimates of coefficients and can lead to unstable or biased predictions, where slight variations in the data cause
gigantic changes in the coefficients. In order to test and determine such relationships among variables, the Variance
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Inflation Factor (VIF) is often employed, offering a measurement of multicollinearity, as seen in Equation (7)

(Salmer6n-Gomez et al., 2025).
1

1
VIF = — = ) (Eq.7)
In this context, Ri? represents the unadjusted coefficient of determination obtained when the independent variable is
regressed on all other independent variables. The tolerance coefficient (TC) is calculated as the inverse of the VIF. A
small TC value (less than 0.2) indicates a strong correlation between independent variables, while values above 0.2
suggest that multicollinearity is not a significant concern. To address multicollinearity, a common approach is to
exclude variables that show high correlation with others, which is the procedure applied in this study.
2-3-4- Random Forest (RF)
Random Forest (RF) is one of the well-known machine learning techniques for the estimation of variable importance
and feature selection. RF performance is extremely sensitive to the number of trees constructed in the model [55].
Feature importance is typically estimated through the Gini Index, which operates well to capture the predictors with
the highest contribution towards the model. A random subset of variables is selected at each decision node as potential
candidates for the split [43]. The decrease in heterogeneity for each candidate variable is then computed, which
measures how much the split improves node purity. Decreases in heterogeneity for all splits are accumulated over all
nodes and averaged over all trees to receive the overall Gini index [56]. This process facilitates the robust ranking of
the most influential variables such that the primary drivers are always identified in the model. Similar applications of
the Random Forest algorithm and hybrid learning frameworks have been successfully used for hydrological prediction,
groundwater level estimation, and water quality monitoring in previous environmental studies [21,39].

1
Gini index = EZ[d(x, z) - 1(x,2)] (Eq.8)

z
Here, I(h,z) is a function that equals 1 if variable x-th variable is used for splitting at the node z, and equals O if it is
not used.

Result

3-1- Results of Parameter Variations

In Figure 3, the monthly patterns of the parameters discussed in the methodology are displayed. By eye, the water
surface appears to have an increasing trend, but in the following section, a more formal test based on the Mann—
Kendall test will be employed to assess the trends formally.

3-2-Maan-Kendall

The Mann—Kendall test was employed to assess monthly and seasonal trends in the water surface of the wetland being
studied. Results include Kendall's Tau, p-values, and Sen's slope estimates (in hectares) for each month and season.
The overall analysis reveals a trend that is generally positive for most of the year, although the magnitude and
significance of the trend vary across months and seasons. For monthly trends, the highest positive Kendall's Tau values
were those of September (0.46, p = 0.00098), June (0.42, p = 0.0028), and July (0.393, p = 0.0054), indicating a
statistically significant increase in water surface expansion in mid to late summer. Moderate positive trends were also
observed in March (0.34, p =0.017) and April (0.353, p = 0.013), suggesting that early spring months are also seeing
water level rises (figure 4). December (Tau = 0.16, p = 0.275) and January (Tau = 0.213, p = 0.142) had weaker, non-
significant trends, suggesting comparatively stable winter water levels. Sen's slope estimates quantify these changes,
with the steepest monthly increases occurring in March (1,698 ha), April (1,694 ha), and February (1,556 ha), and the
lowest increases during winter months of December and January (774 ha and 1,234 ha, respectively). Seasonally, the
strongest positive trends were in Fall (Tau = 0.413, p = 0.0034) and Summer (Tau = 0.373, p = 0.0085), while Spring
(Tau = 0.24, p = 0.0975) and Winter (Tau = 0.267, p = 0.0646) exhibited weaker and less significant increases. Sen's
slopes also support this trend, as Fall and Summer present slopes of 924 ha and 1,222 ha, respectively, whereas Spring
and Winter present slopes of 1,458 ha and 893 ha. It can be inferred that the wetland experiences the fastest water
surface increases during the warmer seasons, whereas winter and early spring exhibit slower or more stable tendencies.
In summary, the Mann—Kendall test and Sen's slope analysis combined detect a significant positive trend in the water
surface of the wetland over the period of study with seasonal variation in more pronounced summer and fall
increments. The findings constitute the foundation for investigation of the climatic and environmental causes of these
trends and guide the next phase machine learning-based assessment of principal controlling factors.

288



WA (ha)

125000 -
| S
100K 016 1 Hilk [ It
* W - -ir
75000 = 0144 _ y 1;";" ELELY ..'I,.H :
g ] T + ". iy . '1.?'.',' 1-!'+ -}->1
SO0 o121 }A}s l'f""::' i F“'Ti"'-",.--""'
25000 010 “;u-;;. 1 !v:br 1t l 1 !1 5
‘:; 3 ‘f'l
o
000 2004 2008 2012 20016 2020 1024 000 2004 008 2002 2016 2020 2024
Year Year
330
m.
e t ; ﬂ sithh | g
= 30 ]l H+ HHH” -g . 1, |1 .
" l *U TN A | N
1EEEN I FINY Ti4801 |
290 e (IR RERVRNENET STRVEILIRIRIRIRVEIRIR VnigiRYRaQNRY Y|
2008 2012 2016 2020 2024 200 2004 2008 2002 2006 2020 024
Year Year
0 400 1
Pergdld ]flfl
o0 wl 14111 HIILL”. fol1rnl
= 40 = 1 1 ¢ | 1
e B I AT TN
i} I ¢ 1
] FRERHUERE 1 11
o 1-‘;131,1‘Lf‘rr'r3"{r¥111‘
000 2004 2008 2012 20016 2020 2024 000 2004 2008 2002 2016 2020 2024
Year Year
&

WS (m's)
B
por Pressure (kPa)
b
et
.:.--
e
Dy
i
T
fm S
o o
i
-~ ,_."‘_‘
.
=
-
[ -
L. -
)
.
.
—
e
*
G
=

ISR L
3 i1t 'yt
10 {,kf"f.*'«l SRl H:h
2 08 r { J
2000 2004 2008 2012 2006 2020 24 ek 204 2008 2002 2016 2020 024
Year Year
15 l
5 T IL.'l-
‘E‘ 10 — 1 & 1 1 1 e } ‘1\ L—\;.\ "}‘
5 g o b BLYTLY, { T [ 51
o ]
5 fﬂ R vl 4{ ;'. I'L-"' [
if M1 f
o -5 L} ¥y 1 y
i 1] 2004 2008 2002 2006 020 24 Ziniy 2004 ZD0R oz 2006 20200 024
Year Year
4 08
£3 o 06
i %
0.4 4
l @ !1
o 024 ?
o)1} 2004 2008 0z 2016 020y 024 il L} 204 2008 "UIZ 2006 2024

Year

Figure 3: Monthly variations of the different variables
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Figure 4: Results of the Mann—Kendall test and analysis of trend variations

3-3-VIF and Random Forest

Before implementing the Random Forest model, a stepwise Variance Inflation Factor (VIF) analysis was conducted
to address multicollinearity among the predictors. In the first step, the highest VIF value corresponded to Actual
Evapotranspiration (AET), which was removed from the dataset. In the subsequent step, Reference Evapotranspiration
(PET) exhibited the next highest VIF and was also excluded. After these changes, all the remaining variables had VIF
values below 10, indicating an acceptable multicollinearity. VIF values for all the variables after this are presented in
Table 2.

Table 2: Results of the Variance Inflation Factor (VIF) Test

Step_1 Step_2 Step_3
NDVI 1.37 NDVI 1.36 NDVI 1.19
LST 20.34 LST 20.34 LST 6.51
P 6.94 P 6.54 P 6.48
AET 34.95 PET 30.09 WS 1.8
PET 30.11 WS 5.33 VAP 3.14
WS 5.33 VAP 3.16 SM 1.43
VAP 3.22 SM 1.43 PDSI 1.71
SM 1.69 PDSI 1.71 RO 4.43
PDSI 1.88 RO 4.49 AOD 1.43
RO 30.87 AOD 1.6
AOD 1.63

The Random Forest (RF) model was trained on 80% of the data, while the remaining 20% was utilized for testing.
The model was very predictive, as shown by the R? of 0.690 for the test set, meaning that the selected environmental
variables were able to account for approximately 69% of water surface variation. The RMSE of 0.154 shows that the
model predictions are very close to the observations, revealing the success of the RF approach in simulating the
dynamics of the wetland.

Variable importance plots revealed that the Palmer Drought Severity Index (PDSI) was the strongest driver
(importance = 0.302), suggesting that long-term drought and water availability are fundamental drivers controlling
water level variation. Soil moisture (SM) was the second strongest predictor (0.250), which further underlines the
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impact of hydrological conditions on wetland dynamics. Vegetation health, as indicated by NDVI, was in the third
position (0.110), showing the interaction between vegetation cover and water storage. The land surface temperature
(LST) also played an important role (0.102), which indicates the influence of temperature-induced evaporation on
wetland water levels (figure 5).

0.35
0.30

2%

0.20
0.15
0.10 I
0.05

0.00

Gini Importance

PDSI SM NDVI LST VAP P AOD WS RO

Figure 5: Results of the Gini Importance Coefficients

Other variables, including vapor pressure (VAP, 0.074), precipitation (P, 0.061), aerosol optical depth (AOD, 0.041),
wind speed (WS, 0.040), and runoff (RO, 0.021), had lower but still measurable contributions. While their individual
impacts were smaller, collectively they influence wetland dynamics by modulating local climate, hydrology, and
sediment or pollutant transport.

Conclusions

This study analyzed long-term trends in the water levels of Hammar Marsh in Irag from 2000 to 2025 using remote
sensing techniques, non-parametric statistical methods, and machine learning models. The aim was to identify the
main factors influencing wetland hydrological variability. Mann—Kendall trend analysis combined with Sen’s slope
estimator revealed an overall increasing trend in water levels, with the most substantial rise occurring during summer
and fall, whereas winter and early spring exhibited weaker or insignificant changes. These results highlight strong
seasonal fluctuations and the significant climatic influence on water availability in the marsh.
To ensure reliability in the predictive modeling, Stepwise Variance Inflation Factor (VIF) testing was used to remove
highly collinear predictors such as Actual Evapotranspiration (AET) and Potential Evapotranspiration (PET). After
refinement, all remaining variables had VIF values below 10, indicating minimal multicollinearity. The Random
Forest model demonstrated strong predictive performance with Rz = 0.690 and RMSE = 0.154 for the test dataset,
suggesting that the selected environmental factors explained most water-level variance.
Variable importance analysis identified the Palmer Drought Severity Index (PDSI) and soil moisture as the most
influential drivers, confirming the dominant role of drought and hydrological factors in marsh regulation. NDVI and
land surface temperature (LST) were also important, reflecting vegetation—temperature interactions. Other climatic
elements including precipitation, wind speed, vapor pressure, aerosol optical depth, and runoff showed secondary but
meaningful influence.
Overall, the study highlights the effectiveness of integrating multi-temporal remote sensing and machine learning for
wetland assessment and supports improved management strategies focusing on drought mitigation and soil moisture
monitoring in Hammar Marsh.
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