• Register
  • Login

Kirkuk University Journal for Agricultural Sciences (KUJAS)

  1. Home
  2. PROTEIN BIOTECHNOLOGY: THE SIGNIFICANCE AND USE OF INDUSTRIAL POLYMER-DEGRADING ENZYMES

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

Related Links

About Journal

FAQ

News

Journal Metrics

PROTEIN BIOTECHNOLOGY: THE SIGNIFICANCE AND USE OF INDUSTRIAL POLYMER-DEGRADING ENZYMES

    Author

    • Mustafa M. Omar

    Kirkuk University / College of Agriculture

,

Document Type : Review Paper

10.58928/ku24.15306
  • Article Information
  • References
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

Microorganisms are the primary source of industrial enzymes, with Bacillus and Aspergillus species being the leading producers. Bacillus strains have historically been used to synthesize commercially significant enzymes due to their status as GRAS (Generally Recognized as Safe) and their extensive distribution in the natural environment. Yeast, particularly Saccharomyces, may provide many significant enzymes in industry. Primary and secondary screening techniques identify microorganisms that are enabled to produce the target enzyme. Modern genetic engineering techniques, such as new recombinant DNA and genetic mutations, have increased yields. The thermophilic microorganisms are used to obtain enzymes with enhanced stability, and they are highly active at temperatures over 80°C. These thermostable enzymes enable several industrial processes that rely on enzyme catalysis to be conducted at higher temperatures, enabling more excellent response rates. However, most thermophiles have not undergone thorough characterization and are not included in the GRAS list. Global sales of "Bulk Enzymes "are approximately US $600 million annually, with 66% attributed to different proteolytic preparations. Isomerases, particularly isomerases, generate around 550 million in yearly sales. Lipases now represent a small portion of overall enzyme sales, but the need for lipases is expected to increase. Massive quantities of degrading enzymes are used in various biotechnological procedures, such as brewing, winemaking, and cheese manufacturing. Enzymatic preparations are used in the brewing, bread-making, and cheese-making sectors. They have made it easier to design other biotechnological methods that generate diverse, commercially significant products to improve the taste, flavor, and appearance characteristics of food items, age meat, clarify juices, and are included in various detergent formulations.

Keywords

  • Industrial enzyme
  • Degrading Enzymes
  • Recombinant DNA
  • Bulk enzymes
  • GRAS

Main Subjects

  • Food science and Biotechnology
  • XML
  • PDF 1.04 M
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
References
  • References

    • Singh, R., Kumar, M., Mittal, A., & Mehta, P. K. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2). doi:10.1007/s13205-016-0485-8.
    • Chapman, J., Ismail, A., & Dinu, C. 2018. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts, 8(6), 238. doi:10.3390/catal8060238. 
    • Zhu, D., Wu, Q., & Hua, L. 2019. Industrial Enzymes. Comprehensive Biotechnology, 1–13. doi:10.1016/b978-0-444-64046-8.00148-8.
    • Wiltschi, B., Cernava, T., Dennig, A., Galindo Casas, M., Geier, M., Gruber, S., Wriessnegger, T. 2020. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances, 40, 107520. doi:10.1016/j.biotechadv.2020.107520.
    • El-Gendi, H., Saleh, A. K., Badierah, R., Redwan, E. M., El-Maradny, Y. A., & El-Fakharany, E. M. 2021. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. Journal of Fungi, 8(1), 23.‏
    • Outtrup, H., & Jrgensen, S. T. 2002. The Importance of Bacillus Species in the Production of Industrial Enzymes. Applications and Systematics of Bacillus and Relatives, 206–218. doi:10.1002/9780470696743.ch14.
    • Sewalt, V., Shanahan, D., Gregg, L., La Marta, J., & Carrillo, R. 2016. The Generally Recognized as Safe (GRAS) Process for Industrial Microbial Enzymes. Industrial Biotechnology, 12(5), 295–302. doi:10.1089/ind.2016.0011 
    • Harirchi, S., Sar, T., Ramezani, M., Aliyu, H., Etemadifar, Z., Nojoumi, S. A., ... & Taherzadeh, M. J. 2022. Bacillales: from taxonomy to biotechnological and industrial perspectives. Microorganisms, 10(12), 2355.‏
    • Danilova, I., & Sharipova, M. 2020. The Practical Potential of Bacilli and Their Enzymes for Industrial Production. Frontiers in Microbiology, 11. doi:10.3389/fmicb.2020.01782 
    • Parapouli, M., Vasileiadis, A., Afendra, A. S., & Hatziloukas, E. 2020. Saccharomyces cerevisiae and its industrial applications. AIMS microbiology, 6(1), 1.‏
    • Deckers, M., Deforce, D., Fraiture, M.-A., & Roosens, N. H. C. 2020. Genetically Modified Micro-Organisms for Industrial Food Enzyme Production: An Overview. Foods, 9(3), 326. doi:10.3390/foods9030326.
    • Bazzaz, A. A., Lor, D. A., & Mahdi, N. B. 2018. Impact of some antibiotics on bacteria isolated from appendices in Kirkuk Province, Iraq. Advances in Bioscience and Biotechnology, 9(1), 1-10.‏
    • Robinson, P. K. 2015. Enzymes: principles and biotechnological applications. Essays In Biochemistry, 59(0), 1–41. doi:10.1042/bse0590001.
    • Munguti, J. M., Musa, S., Orina, P. S., Kyule, D. N., Opiyo, M. A., Charo-Karisa, H., & Ogello, E. O. 2014. An overview of current status of Kenyan fish feed industry and feed management practices, challenges and opportunities.‏
    • Kumar, V., Sangwan, P., Singh, D., & Gill, P. K. 2014. Global scenario of industrial enzyme market. Industrial enzymes: trends, scope and relevance, 176-196.‏
    • Mann, M. K., & Sooch, B. S. 2020. Emerging trends in food industry waste valorization for bioethanol production. Biorefineries: a step towards renewable and clean energy, 57-92.‏
    • Mahmut, Y., Abdul-hameed, M. H., & Abdulqader, R. S. 2023. Morphological and molecular identification of fungi isolated from various habitats in Kirkuk city–Iraq. Eurasian Journal of Biological and Chemical Sciences, 6(1), 26-30.‏
    • Satyanarayana, T., Littlechild, J., & Kawarabayasi, Y. (Eds.). 2013. Thermophilic Microbes in Environmental and Industrial Biotechnology. doi:10.1007/978-94-007-5899-5.
    • Mohammad, B. T., Al Daghistani, H. I., Jaouani, A., Abdel-Latif, S., & Kennes, C. 2017. Isolation and Characterization of Thermophilic Bacteria from Jordanian Hot Springs: Bacillus licheniformis and Thermomonas hydrothermalis Isolates as Potential Producers of Thermostable Enzymes. International Journal of Microbiology, 2017, 1–12. doi:10.1155/2017/6943952.
    • Straub, C. T., Counts, J. A., Nguyen, D. M. N., Wu, C.-H., Zeldes, B. M., Crosby, J. R., … Kelly, R. M. 2018. Biotechnology of extremely thermophilic archaea. FEMS Microbiology Reviews, 42(5), 543–578. doi:10.1093/femsre/fuy012.
    • Olempska-Beer, Z. S., Merker, R. I., Ditto, M. D., & DiNovi, M. J. 2006. Food-processing enzymes from recombinant microorganisms—a review. Regulatory Toxicology and Pharmacology, 45(2), 144–158. doi:10.1016/j.yrtph.2006.05.001 
    • Zeldes, B. M., Keller, M. W., Loder, A. J., Straub, C. T., Adams, M. W. W., & Kelly, R. M. 2015. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Frontiers in Microbiology, 6. doi:10.3389/fmicb.2015.01209.
    • Kambourova, M. 2018. Thermostable enzymes and polysaccharides produced by thermophilic bacteria isolated from Bulgarian hot springs. Engineering in Life Sciences. doi:10.1002/elsc.201800022.
    • Sarrouh, B., Santos, T. M., Miyoshi, A., Dias, R., & Azevedo, V. 2012. Up-to-date insight on industrial enzymes applications and global market. J Bioprocess Biotech, 4, 002.‏
    • Li, S., Yang, X., Yang, S., Zhu, M., & Wang, X. 2012. Technology prospecting on enzymes: application, marketing and engineering. Computational and structural biotechnology journal, 2(3), e201209017.‏
    • Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., … Mathew, A. K. 2018. Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology, 56(1). doi:10.17113/ftb.56.01.18.5491.
    • Omar, M. M. 2020. Isolation And Identification Of Bacillus Sp. Producing Of Amylase From Different Sources In Kirkuk, Iraq. Plant Archives, 20(1), 1867-1872.‏
    • Kasprowicz-Potocka, M., Zaworska-Zakrzewska, A., Łodyga, D., & Józefiak, D. 2024. The Effect of Enzymatic Fermentation on the Chemical Composition and Contents of Antinutrients in Rapeseed Meal. Fermentation, 10(2), 107.‏
    • Vega-Paulino, R. J., & Zúniga-Hansen, M. E. 2012. Potential application of commercial enzyme preparations for industrial production of short-chain fructooligosaccharides. Journal of Molecular Catalysis B: Enzymatic, 76, 44–51. doi:10.1016/j.molcatb.2011.12.007. 
    • Rao, A. S., Nair, A., Salu, H. A., Pooja, K. R., Nandyal, N. A., Joshi, V. S., ... & More, S. S. 2023. Carbohydrases: A class of all-pervasive industrial biocatalysts. In Biotechnology of Microbial Enzymes (pp. 497-523). Academic Press.‏org/10.1016/B978-0-443-19059-9.00018-9
    • Robyt, J. F. 2009. Enzymes and Their Action on Starch. Starch, 237–292. doi:10.1016/b978-0-12-746275-2.00007-0.
    • Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. 2014. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch - Stärke, 67(1-2), 14–29. doi:10.1002/star.201300238.
    • Aberoumand, A. 2011. Studies on methods of starch modification and its uses in food and non-food industries products.‏ 6(2), 115-124.
    • Willför, S., Sundberg, A., Hemming, J., & Holmbom, B. 2005. Polysaccharides in some industrially important softwood species. Wood Science and Technology, 39(4), 245–257. doi:10.1007/s00226-004-0280-2.
    • Souza, P. M. de, & Magalhães, P. de O. e. 2010. Application of microbial α-amylase in industry - A review. Brazilian Journal of Microbiology, 41(4), 850–861. doi:10.1590/s1517-83822010000400004.
    • Abe, A., Tonozuka, T., Sakano, Y., & Kamitori, S. 2004. Complex Structures of Thermoactinomyces vulgaris R-47 α-Amylase 1 with Malto-oligosaccharides Demonstrate the Role of Domain N Acting as a Starch-binding Domain. Journal of Molecular Biology, 335(3), 811–822. doi:10.1016/j.jmb.2003.10.078.
    • Benjamin, S., Smitha, R. B., Jisha, V. N., Pradeep, S., Sajith, S., Sreedevi, S., ... & Josh, M. S. 2013. A monograph on amylases from Bacillus‏
    • Kandandapani, S., Y Tan, C., S Shuib, A., & Tayyab, S. 2016. Influence of buffer composition and calcium chloride on GdnHCl denaturation of Bacillus licheniformis α-amylase. Protein and peptide letters, 23(6), 537-543.‏
    • Zaferanloo, B., Bhattacharjee, S., Ghorbani, M. M., Mahon, P. J., & Palombo, E. A. 2014. Amylase production by Preussia minima, a fungus of endophytic origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiology, 14(1), 55. doi:10.1186/1471-2180-14-55.
    • Marín-Navarro, J., & Polaina, J. 2010. Glucoamylases: structural and biotechnological aspects. Applied Microbiology and Biotechnology, 89(5), 1267–1273. doi:10.1007/s00253-010-3034-0.
    • Acosta Pavas, J. C., Alzate Blandón, L., & Ruiz Colorado, Á. A. 2020. Enzymatic hydrolysis of wheat starch for glucose syrup production. DYNA, 87(214), 173–182. doi:10.15446/dyna. v87n214.82669.
    • Fulton, D. C., Stettler, M., Mettler, T., Vaughan, C. K., Li, J., Francisco, P., … Zeeman, S. C. 2008.  -AMYLASE4, a Noncatalytic Protein Required for Starch Breakdown, Acts Upstream of Three Active -Amylases in Arabidopsis Chloroplasts. The Plant Cell Online, 20(4), 1040–1058. doi:10.1105/tpc.107.056507.
    • Van Der Maarel, M. J., Van der Veen, B., Uitdehaag, J. C., Leemhuis, H., & Dijkhuizen, L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. Journal of biotechnology, 94(2), 137-155.‏
    • Hii, S. L., Tan, J. S., Ling, T. C., & Ariff, A. B. 2012. Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications. Enzyme Research, 2012, 1–14. doi:10.1155/2012/921362.
    • Kobayashi, S., & Müllen, K. (Eds.). 2015. Encyclopedia of polymeric nanomaterials. Berlin Heidelberg: Springer Berlin Heidelberg.‏
    • Naik, B., Kumar, V., Goyal, S. K., Dutt Tripathi, A., Mishra, S., Joakim Saris, P. E., ... & Rustagi, S. 2023. Pullulanase: unleashing the power of enzyme with a promising future in the food industry. Frontiers in Bioengineering and Biotechnology, 11, 1139611.‏
    • Tian, Y., Wang, Y., Zhong, Y., Møller, M. S., Westh, P., Svensson, B., & Blennow, A. 2023. Interfacial catalysis during amylolytic degradation of starch granules: Current understanding and kinetic approaches. Molecules, 28(9), 3799.‏
    • Prakash, N., Gupta, S., Ansari, M., Khan, Z. A., & Suneetha, V. 2012. Production of economically important products by the use of pullulanase enzyme. International Journal of Science Innovations and Discoveries, 2(2), 266-273.‏
    • Qi, X., & Tester, R. F. 2019. Fructose, galactose and glucose–In health and disease. Clinical nutrition ESPEN, 33, 18-28.‏
    • Omoregie Egharevba, H. 2020. Chemical Properties of Starch and Its Application in the Food Industry. Chemical Properties of Starch. doi:10.5772/intechopen.87777.
    • Magwaza, L. S., & Opara, U. L. 2015. Analytical methods for determination of sugars and sweetness of horticultural products—A review. Scientia Horticulturae, 184, 179-192.‏
    • Jia, D.-X., Zhou, L., & Zheng, Y.-G. 2017. Properties of a novel thermostable glucose isomerase mined from Thermus oshimai and its application to preparation of high fructose corn syrup. Enzyme and Microbial Technology, 99, 1–8. doi: 10.1016/j.enzmictec.2017.01.001.‏
    • Maicas, S. 2020. The Role of Yeasts in Fermentation Processes. Microorganisms, 8(8), 1142. doi:10.3390/microorganisms8081142.
    • Saqib, S., Akram, A., Halim, S. A., & Tassaduq, R. 2017. Sources of β-galactosidase and its applications in food industry. 3 Biotech, 7(1). doi:10.1007/s1205-017-0645-5.
    • Forsgård, R. A. 2019. Lactose digestion in humans: intestinal lactase appears to be constitutive whereas the colonic microbiome is adaptable. The American journal of clinical nutrition, 110(2), 273-279.‏
    • Mollea, C., Marmo, L., & Bosco, F. 2013. Valorisation of Cheese Whey, a By-Product from the Dairy Industry. Food Industry. doi:10.5772/53159.
    • Manoochehri, H., Hosseini, N. F., Saidijam, M., Taheri, M., Rezaee, H., & Nouri, F. 2020. A review on invertase: Its potentials and applications. Biocatalysis and Agricultural Biotechnology, 25, 101599.‏
    • Yang, C., & Lü, X. 2021. Composition of plant biomass and its impact on pretreatment. In Advances in 2nd Generation of Bioethanol Production(pp. 71-85). Woodhead Publishing.‏
    • Benians, T. A. S. 2012. In situ analysis of cotton fibre cell wall polysaccharides. University of Leeds.‏
    • Scheller, H. V., & Ulvskov, P. 2010. Hemicelluloses. Annual Review of Plant Biology, 61(1), 263–289. doi:10.1146/annurev-arplant-042809-112315
    • Kang, X., Kirui, A., Dickwella Widanage, M. C., Mentink-Vigier, F., Cosgrove, D. J., & Wang, T. 2019. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature Communications, 10(1). doi:10.1038/s41467-018-08252-0 
    • Sundarraj, A. A., & Ranganathan, T. V. 2018. A review on cellulose and its utilization from agro-industrial waste. Drug Invent. Today, 10(1), 89-94.‏
    • Datta, R. 2024. Enzymatic degradation of cellulose in soil: A review. Heliyon.‏
    • Stark, N. M., Yelle, D. J., & Agarwal, U. P. 2016. Techniques for Characterizing Lignin. Lignin in Polymer Composites, 49–66. doi:10.1016/b978-0-323-35565-0.00004-7 

     

    • Lavanya, D. K. P. K., Kulkarni, P. K., Dixit, M., Raavi, P. K., & Krishna, L. N. V. 2011. Sources of cellulose and their applications—A review. International Journal of Drug Formulation and Research, 2(6), 19-38.‏
    • Mazzoli, R. 2012. DEVELOPMENT OF MICROORGANISMS FOR CELLULOSE-BIOFUEL CONSOLIDATED BIOPROCESSINGS: METABOLIC ENGINEERS’ TRICKS. Computational and Structural Biotechnology Journal, 3(4), e201210007. doi:10.5936/csbj.201210007.
    • MOHNEN, D. 2008. Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11(3), 266–277. doi: 10.1016/j.pbi.2008.03.006.
    • Roman-Benn, A., Contador, C. A., Li, M. W., Lam, H. M., Ah-Hen, K., Ulloa, P. E., & Ravanal, M. C. 2023. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chemistry Advances, 2, 100192.‏
    • Cortés-Camargo, S., Román-Guerrero, A., Alpizar-Reyes, E., & Pérez-Alonso, C. 2023. New Sources of Pectin: Extraction, Processing, and Industrial Applications. In Utilization of Pectin in the Food and Drug Industries. IntechOpen.‏
    • Ashurst, P. R. 2016. Chemistry and technology of soft drinks and fruit juices. John Wiley & Sons.‏
    • Alimardani-Theuil, P., Gainvors-Claisse, A., & Duchiron, F. 2011. Yeasts: An attractive source of pectinases—From gene expression to potential applications: A review. Process Biochemistry, 46(8), 1525–1537. doi: 10.1016/j.procbio.2011.05.010.
    • Haile, S., & Ayele, A. 2022. Pectinase from microorganisms and its industrial applications. The Scientific World Journal, 2022.‏
    • Dhillon, A., Sharma, K., Rajulapati, V., & Goyal, A. 2017. Proteolytic enzymes. In Current Developments in Biotechnology and Bioengineering, pp. 149-173.
    • Gellissen, G. (Ed.). 2004. Production of Recombinant Proteins. doi:10.1002/3527603670.
    • Nevalainen, H. (Ed.). 2020. Grand Challenges in Fungal Biotechnology. Grand Challenges in Biology and Biotechnology. doi:10.1007/978-3-030-29541-7.
    • Heredia-Sandoval, N., Valencia-Tapia, M., Calderón de la Barca, A., & Islas-Rubio, A. 2016. Microbial Proteases in Baked Goods: Modification of Gluten and Effects on Immunogenicity and Product Quality. Foods, 5(4), 59. doi:10.3390/foods5030059. 
    • Ashie, I. N. A., Sorensen, T. L., & Nielsen, P. M. 2002. Effects of Papain and a Microbial Enzyme on Meat Proteins and Beef Tenderness. Journal of Food Science, 67(6), 2138–2142. doi:10.1111/j.1365-2621. 2002.tb09516. x.
    • Sivasubramanian, S., Manohar, B. M., & Puvanakrishnan, R. 2008. Mechanism of enzymatic dehairing of skins using a bacterial alkaline protease. Chemosphere, 70(6), 1025–1034. doi: 10.1016/j.chemosphere.2007.07.084.
    • Lasoń-Rydel, M., Sieczyńska, K., Gendaszewska, D., Ławińska, K., & Olejnik, T. P. 2024. Use of enzymatic processes in the tanning of leather materials. AUTEX Research Journal, 24(1), 20230012.‏
    • Hauthal, H. G. 2009. Sustainable detergents and cleaners, progress on ingredients, nanoparticles, analysis, environment. Tenside Surfact. Det, 46, 53-62.
    • Singh, B. K. 2021. An overview of enzymes and their use in the detergent industry. Asian Journal of Research in Social Sciences and Humanities, 11(12), 71-76.‏
    • Lai, K. Y. (Ed.). 2005. Liquid detergents. CRC Press.‏
    • Weeks, J. A., Harper, R. A., Simon, R. A., & Burdick, J. D. 2011. Assessment of sensitization risk of a laundry pre-spotter containing protease. Cutaneous and Ocular Toxicology, 30(4), 272–279. doi:10.3109/15569527.2011.565010.
    • Kumari, U., Singh, R., Ray, T., Rana, S., Saha, P., Malhotra, K., & Daniell, H. 2019. Validation of leaf enzymes in the detergent and textile industries: launching of a new platform technology. Plant Biotechnology Journal. doi:10.1111/pbi.13122.
    • Rana, A. M., Devreese, B., De Waele, S., Sodhozai, A. R., Rozi, M., Rashid, S., ... & Ali, N. 2023. Immobilization and docking studies of Carlsberg subtilisin for application in poultry industry. Plos one, 18(8), e0269717.‏
    • Mahmoud, A., Kotb, E., Alqosaibi, A. I., Al-Karmalawy, A. A., Al-Dhuayan, I. S., & Alabkari, H. 2021. In vitro and in silico characterization of alkaline serine protease from Bacillus subtilis D9 recovered from Saudi Arabia. Heliyon, 7(10).‏
    • Chen, C. C., Chen, L. Y., Li, W. T., Chang, K. L., Kuo, M. I., Chen, C. J., & Hsieh, J. F. 2021. Influence of chymosin on physicochemical and hydrolysis characteristics of casein micelles and individual caseins. Nanomaterials, 11(10), 2594.‏
    • Andrén, A. 2011. Cheese | Rennets and Coagulants. Encyclopedia of Dairy Sciences, 574–578. doi:10.1016/b978-0-12-374407-4.00069-8.
    • Nicosia, F. D., Puglisi, I., Pino, A., Caggia, C., & Randazzo, C. L. 2022. Plant milk-clotting enzymes for cheesemaking. Foods, 11(6), 871.‏
    • Britten, M., & Giroux, H. J. 2021. Rennet coagulation of heated milk: A review. International Dairy Journal, 105179. doi:10.1016/j.idairyj.2021.105179. 
    • Danser, A. J., & Deinum, J. 2005. Renin, prorenin and the putative (pro) renin receptor. Hypertension, 46(5), 1069-1076.‏
    • Bouroutzika, E., Proikakis, S., Anagnostopoulos, A. K., Katsafadou, A. I., Fthenakis, G. C., & Tsangaris, G. T. 2021. Proteomics analysis in dairy products: cheese, a review. Applied Sciences, 11(16), 7622.‏
    • Chandra, P., Enespa, Singh, R., & Arora, P. K. 2020. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories, 19(1). doi:10.1186/s12934-020-01428-8.
    • Jooyandeh, H., Amarjeet, K., & Minhas, K. S. 2009. Lipases in dairy industry: a review. Journal of Food Science and Technology (Mysore), 46(3), 181-189.‏
    • Basketter, D. A., Kruszewski, F. H., Mathieu, S., Kirchner, D. B., Panepinto, A., Fieldsend, M., … Concoby, B. 2015. Managing the Risk of Occupational Allergyin the Enzyme Detergent Industry. Journal of Occupational and Environmental Hygiene, 12(7), 431–437. doi:10.1080/15459624.2015.1011741.Spök, A. 2006. Safety Regulations of Food Enzymes. Food Technology & Biotechnology, 44(2).
    • Article View: 164
    • PDF Download: 188
Kirkuk University Journal for Agricultural Sciences (KUJAS)
Volume 15, Issue 3
September 2024
Page 36-51
Files
  • XML
  • PDF 1.04 M
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
Statistics
  • Article View: 164
  • PDF Download: 188

APA

Omar, M. (2024). PROTEIN BIOTECHNOLOGY: THE SIGNIFICANCE AND USE OF INDUSTRIAL POLYMER-DEGRADING ENZYMES. Kirkuk University Journal for Agricultural Sciences (KUJAS), 15(3), 36-51. doi: 10.58928/ku24.15306

MLA

Mustafa M. Omar. "PROTEIN BIOTECHNOLOGY: THE SIGNIFICANCE AND USE OF INDUSTRIAL POLYMER-DEGRADING ENZYMES". Kirkuk University Journal for Agricultural Sciences (KUJAS), 15, 3, 2024, 36-51. doi: 10.58928/ku24.15306

HARVARD

Omar, M. (2024). 'PROTEIN BIOTECHNOLOGY: THE SIGNIFICANCE AND USE OF INDUSTRIAL POLYMER-DEGRADING ENZYMES', Kirkuk University Journal for Agricultural Sciences (KUJAS), 15(3), pp. 36-51. doi: 10.58928/ku24.15306

VANCOUVER

Omar, M. PROTEIN BIOTECHNOLOGY: THE SIGNIFICANCE AND USE OF INDUSTRIAL POLYMER-DEGRADING ENZYMES. Kirkuk University Journal for Agricultural Sciences (KUJAS), 2024; 15(3): 36-51. doi: 10.58928/ku24.15306

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Glossary
  • Sitemap

News

  • Kirkuk University Journal For Agricultural Sciences ... 2025-12-01
  • Kirkuk University Journal of Agricultural Sciences ... 2026-01-07

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com