• Register
  • Login

Kirkuk University Journal for Agricultural Sciences (KUJAS)

  1. Home
  2. Drought Stress and Growth Regulation: Review in the Role of Hormonal Regulation

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

Related Links

About Journal

FAQ

News

Journal Metrics

Drought Stress and Growth Regulation: Review in the Role of Hormonal Regulation

    Authors

    • Adil Hais AbdulKafoor 1
    • Marwa Ismail ALHabeeb 2
    • muhanad hamed shenawa 3
    • Ali Fadhil Al-Rawi 4
    • Falah Hasan Al-Khalidi 5
    • Ahmed Jabbar Al-Fahdawy 6
    • Osama Hussein Mhedi 1
    • Mohammed Hamdan Al-Issawi 1

    1 Department of Field Crops, Agriculture College, University of Anbar

    2 Department of biology, College of Education for Women, University of Anbar

    3 Monitoring of Trade and Finance, Trade Ministry

    4 Agriculture Department of Anbar/IRAQ

    5 Ministry of Education

    6 Independent High Electoral Commission

,

Document Type : Review Paper

10.58928/ku24.15307
  • Article Information
  • References
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

During their life cycle, plants are always exposed to multiple abiotic stresses that negatively affect their growth and development. Based on this fact, plants developed many mechanisms to reduce or tolerate those stresses. Plants undergo a wide range of morphological, physiological, and biochemical changes in response to environmental stresses. However, drought is one of many other environmental stresses which is considered to be the most significant environmental issues that affect the lives of organisms on the planet of Earth. With the recent increase in the severity of climate change, researchers have devoted their efforts to a deeper understanding of the effects of drought on the level of plant response from a physiological and biochemical standpoint. With the recent increase in the severity of climate changes, the problem of drought has gotten worse, thus researchers have focused their efforts on developing a deeper knowledge of how drought affects plant response at the physiological and biochemical levels. The plant undergoes several significant changes, one of which is an alteration in its hormonal balance. Specific hormones become more effective and assist the plant in sustaining a tolerable level of free radicals, while other hormones become less active under non-growth-promoting environments. Abscisic acid, sometimes referred to as the stress hormone, is one of these plant hormones. Its function under stress is to slow down the plant's growth to keep it at an acceptable level of growth. The hormones ascorbic acid, glycine betaine, alpha-tocopherol, melatonin, and Jasmonic are known to be growth-stimulating substances as well as non-enzymatic antioxidants that help suppress eliminated free radical formation. Focusing on this, this review highlighted the function of several plant hormones and the processes that accompany them in reducing the harm caused to plants by drought stress

Keywords

  • Abiotic Stresses
  • Antioxidants
  • Free radicals
  • Plant hormones
  • Drought

Main Subjects

  • Field Crops
  • XML
  • PDF 886.93 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
References

References

 
[1]         S. Vigil, “Addressing the land degradation-migration nexus: the role of the United Nations Convention to Combat Desertification.” 2019.
[2]         Y. Pan et al., “Leading trait dimensions in flood-tolerant plants,” Ann Bot, vol. 130, no. 3, pp. 383–392, Sep. 2022, doi: 10.1093/AOB/MCAC031.
[3]         A. O. Alfalahi et al., “Epigenetic variation as a new plant breeding tool: A review,” J King Saud Univ Sci, vol. 34, no. 8, p. 102302, Nov. 2022, doi: 10.1016/J.JKSUS.2022.102302.
[4]         B. Glaeser, “The changing human-nature relationship (HNR) in the context of GEC (Global Environmental Change),” 01-301, vol. 01–301, p. 29, 2010.
[5]         N. J. H. Hayyawi, M. H. Al-Issawi, A. A. Alrajhi, H. Al-Shmgani, and H. Rihan, “Molybdenum Induces Growth, Yield, and Defence System Mechanisms of the Mung Bean (Vigna radiata L.) under Water Stress Conditions,” International Journal of Agronomy, vol. 2020, 2020, doi: 10.1155/2020/8887329.
[6]         M. H. Shenawa and A. O. Alfalahi, “Enzymatic Regulation of Drought and Heat Stresses in Maize (Zea mays L.),” IOP Conf Ser Earth Environ Sci, vol. 904, no. 1, Nov. 2021, doi: 10.1088/1755-1315/904/1/012058.
[7]         A. Skubacz, A. Daszkowska-Golec, and I. Szarejko, “The role and regulation of ABI5 (ABA-insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk,” Front Plant Sci, vol. 7, no. DECEMBER2016, p. 234140, Dec. 2016, doi: 10.3389/FPLS.2016.01884/BIBTEX.
[8]         H. Z. Rihan, M. Al-Issawi, and M. P. Fuller, “Upregulation of CBF/DREB1 and cold tolerance in artificial seeds of cauliflower (Brassica oleracea var. botrytis),” Sci Hortic, vol. 225, pp. 299–309, 2017, doi: 10.1016/j.scienta.2017.07.017.
[9]         M. J. Holdsworth, L. Bentsink, and W. J. J. Soppe, “Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination,” New Phytologist, vol. 179, no. 1, pp. 33–54, Jul. 2008, doi: 10.1111/J.1469-8137.2008.02437.X.
[10]       E. Nambara, M. Okamoto, K. Tatematsu, R. Yano, M. Seo, and Y. Kamiya, “Abscisic acid and the control of seed dormancy and germination,” Seed Sci Res, vol. 20, no. 2, pp. 55–67, Jun. 2010, doi: 10.1017/S0960258510000012.
[11]       P. McCourt and R. Creelman, “The ABA receptors -- we report you decide,” Curr Opin Plant Biol, vol. 11, no. 5, pp. 474–478, Oct. 2008, doi: 10.1016/J.PBI.2008.06.014.
[12]       K. Gupta et al., “Abscisic Acid: Role in Fruit Development and Ripening,” Front Plant Sci, vol. 13, p. 817500, May 2022, doi: 10.3389/FPLS.2022.817500/BIBTEX.
[13]       D. Amritphale, K. Yoneyama, Y. Takeuchi, P. Ramakrishna, and D. Kusumoto, “The modulating effect of the perisperm-endosperm envelope on ABA-inhibition of seed germination in cucumber,” J Exp Bot, vol. 56, no. 418, pp. 2173–2181, Aug. 2005, doi: 10.1093/JXB/ERI217.
[14]       M. Zhang, B. Yuan, and P. Leng, “The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit,” J Exp Bot, vol. 60, no. 6, p. 1579, Apr. 2009, doi: 10.1093/JXB/ERP026.
[15]       C. M. Cantín, M. W. Fidelibus, and C. H. Crisosto, “Application of abscisic acid (ABA) at veraison advanced red color development and maintained postharvest quality of ‘Crimson Seedless’ grapes,” Postharvest Biol Technol, vol. 46, no. 3, pp. 237–241, Dec. 2007, doi: 10.1016/J.POSTHARVBIO.2007.05.017.
[16]       S. J. Owen, M. D. Lafond, P. Bowen, C. Bogdanoff, K. Usher, and S. R. Abrams, “Profiles of Abscisic Acid and Its Catabolites in Developing Merlot Grape (Vitis vinifera) Berries,” Am J Enol Vitic, vol. 60, no. 3, pp. 277–284, Sep. 2009, doi: 10.5344/AJEV.2009.60.3.277.
[17]       A. K. Sandhu, D. J. Gray, J. Lu, and L. Gu, “Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins,” Food Chem, vol. 126, no. 3, pp. 982–988, Jun. 2011, doi: 10.1016/J.FOODCHEM.2010.11.105.
[18]       P. Chen et al., “Interactions of ABA signaling core components (SlPYLs, SlPP2Cs, and SlSnRK2s) in tomato (Solanum lycopersicon),” J Plant Physiol, vol. 205, pp. 67–74, Oct. 2016, doi: 10.1016/J.JPLPH.2016.07.016.
[19]       W. Mou et al., “Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening,” PLoS One, vol. 11, no. 4, Apr. 2016, doi: 10.1371/JOURNAL.PONE.0154072.
[20]       S. Lacampagne, S. Gagné, and L. Gény, “Involvement of Abscisic Acid in Controlling the Proanthocyanidin Biosynthesis Pathway in Grape Skin: New Elements Regarding the Regulation of Tannin Composition and Leucoanthocyanidin Reductase (LAR) and Anthocyanidin Reductase (ANR) Activities and Expression,” J Plant Growth Regul, vol. 29, no. 1, pp. 81–90, Mar. 2010, doi: 10.1007/S00344-009-9115-6/METRICS.
[21]       M. Zhang, P. Leng, G. Zhang, and X. Li, “Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits,” J Plant Physiol, vol. 166, no. 12, pp. 1241–1252, Aug. 2009, doi: 10.1016/J.JPLPH.2009.01.013.
[22]       S. S. Zaharah, Z. Singh, G. M. Symons, and J. B. Reid, “Mode of action of abscisic acid in triggering ethylene biosynthesis and softening during ripening in mango fruit,” Postharvest Biol Technol, vol. 75, pp. 37–44, Jan. 2013, doi: 10.1016/J.POSTHARVBIO.2012.07.009.
[23]       J. A. Monteiro, T. A. Nell, and J. E. Barrett, “Postproduction of potted miniature rose: Flower respiration and single flower longevity,” Journal of the American Society for Horticultural Science, vol. 126, no. 1, pp. 134–139, 2001, doi: 10.21273/JASHS.126.1.134.
[24]       C. Zheng et al., “Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism,” J Exp Bot, vol. 66, no. 5, pp. 1527–1542, Mar. 2015, doi: 10.1093/JXB/ERU519.
[25]       M. G. Blanchard, L. A. Newton, E. S. Runkle, D. Woolard, and C. A. Campbell, “Exogenous applications of abscisic acid improved the postharvest drought tolerance of several annual bedding plants,” Acta Hortic, vol. 755, pp. 127–132, 2007, doi: 10.17660/ACTAHORTIC.2007.755.16.
[26]       X. X. Zhao, Q. Q. Ma, C. Liang, Y. Fang, Y. Q. Wang, and W. Wang, “Effect of glycinebetaine on function of thylakoid membranes in wheat flag leaves under drought stress,” Biol Plant, vol. 51, no. 3, pp. 584–588, Sep. 2007, doi: 10.1007/S10535-007-0128-3/METRICS.
[27]       H. H. Manaf, “Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant,” Annals of Agricultural Sciences, vol. 61, no. 1, pp. 41–48, Jun. 2016, doi: 10.1016/J.AOAS.2016.04.003.
[28]       H. S. Osman and B. B. M. Salim, “Influence of exogenous application of some phytoprotectants on growth, yield and pod quality of snap bean under NaCl salinity,” Annals of Agricultural Sciences, vol. 61, no. 1, pp. 1–13, Jun. 2016, doi: 10.1016/J.AOAS.2016.05.001.
[29]       T. Kuromori, M. Seo, and K. Shinozaki, “ABA Transport and Plant Water Stress Responses,” Trends Plant Sci, vol. 23, no. 6, pp. 513–522, Jun. 2018, doi: 10.1016/j.tplants.2018.04.001.
[30]       L. B, T. P, X. F, H. P, and W. J, “Soybean miR159 Family Members Function in Plant Responses to Low Phosphorus, High Salinity, and Abscisic Acid Treatment,” Jun. 2023, doi: 10.20944/PREPRINTS202306.0772.V1.
[31]       A. Singh, D. Jain, J. Pandey, M. Yadav, K. C. Bansal, and I. K. Singh, “Deciphering the role of miRNA in reprogramming plant responses to drought stress,” Crit Rev Biotechnol, vol. 43, no. 4, pp. 613–627, 2023, doi: 10.1080/07388551.2022.2047880.
[32]       J. B. Kim, J. Y. Kang, and Y. K. Soo, “Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance,” Plant Biotechnol J, vol. 2, no. 5, pp. 459–466, Sep. 2004, doi: 10.1111/J.1467-7652.2004.00090.X.
[33]       R. Ndathe, R. Dale, and N. Kato, “Dynamic modeling of ABA-dependent expression of the Arabidopsis RD29A gene,” Front Plant Sci, vol. 13, p. 928718, Aug. 2022, doi: 10.3389/FPLS.2022.928718/BIBTEX.
[34]       W. Baoxiang et al., “A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress,” Planta 2023 258:4, vol. 258, no. 4, pp. 1–14, Sep. 2023, doi: 10.1007/S00425-023-04232-X.
[35]       L. Taiz and E. Zeiger, Plant Physiology-5 th (Ed.). Sunderland.
[36]       J. Li et al., “Comprehensive analysis of cucumber C-repeat/dehydration-responsive element binding factor family genes and their potential roles in cold tolerance of cucumber,” BMC Plant Biol, vol. 22, no. 1, Dec. 2022, doi: 10.1186/S12870-022-03664-Z.
[37]       D. R. Gallie, “The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth,” J Exp Bot, vol. 64, no. 2, pp. 433–443, Jan. 2013, doi: 10.1093/JXB/ERS330.
[38]       P. G. Ergönül and O. Köseoǧlu, “Changes in α-, β-, γ- and δ-tocopherol contents of mostly consumed vegetable oils during refining process,” CyTA - Journal of Food, vol. 12, no. 2, pp. 199–202, Apr. 2014, doi: 10.1080/19476337.2013.821672.
[39]       N. A. Akram, F. Shafiq, and M. Ashraf, “Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance,” Front Plant Sci, vol. 8, p. 238088, Apr. 2017, doi: 10.3389/FPLS.2017.00613/BIBTEX.
[40]       M. Sadiq, N. A. Akram, M. Ashraf, F. Al-Qurainy, and P. Ahmad, “Alpha-Tocopherol-Induced Regulation of Growth and Metabolism in Plants Under Non-stress and Stress Conditions,” J Plant Growth Regul, vol. 38, no. 4, pp. 1325–1340, Dec. 2019, doi: 10.1007/S00344-019-09936-7/METRICS.
[41]       L. Ramírez, C. G. Bartoli, and L. Lamattina, “Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency,” J Exp Bot, vol. 64, no. 11, pp. 3169–3178, Aug. 2013, doi: 10.1093/JXB/ERT153.
[42]       S. Farouk, “Ascorbic Acid and α-Tocopherol Minimize Salt-Induced Wheat Leaf Senescence,” Journal of Stress Physiology & Biochemistry, vol. 7, no. 3, pp. 58–79, Sep. 2011.
[43]       S. Yazdanpanah, A. Baghizadeh, and F. Abbassi, “The interaction between drought stress and salicylic and ascorbic acids on some biochemical characteristics of Satureja hortensis,” Afr J Agric Res, vol. 6, no. 4, pp. 798–807, Feb. 2011, doi: 10.5897/AJAR10.405.
[44]       A. L. Tuna, C. Kaya, H. Altunlu, and M. Ashraf, “Mitigation effects of non-enzymatic antioxidants in maize (Zea mays L.) plants under salinity stress,” Aust J Crop Sci, Jan. 2013.
[45]       B. Ejaz, Z. A. Sajid, and F. Aftab, “Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline contents, and growth parameters of Saccharum spp. hybrid cv. HSF-240 under salt stress,” Turkish Journal of Biology, vol. 36, no. 6, pp. 630–640, Jan. 2012, doi: 10.3906/biy-1201-37.
[46]       M. A. Kotb, A. A. Mohammed, M. M. M. El-Sayed, and M. Sh. Abd El-Haliem, “EFFECT OF INTERACTION BETWEEN WATER STRESS AND FOLIAR APPLICATION BY ASCORBIC ACID OR MICRONUTRIENTS ON MAIZE PRODUCTIVITY AND IRRIGATION WATER USE EFFICIENCY,” Zagazig Journal of Agricultural Research, vol. 48, no. 3, pp. 643–658, May 2021, doi: 10.21608/ZJAR.2021.191276.
[47]       H.-A. Ali Hussein, B. El-Din Mekki, H.-A. Hussien, and H. Salem, “Role of glutathione, ascorbic acid and α-tocopherol in alleviation of drought stress in cotton plants,” Article in International Journal of ChemTech Research, vol. 8, no. 4, pp. 1573–1581, 2015.
[48]       T. Hemberg, “Growth-Inhibiting Substances in Terminal Buds of Fraxinus,” Physiol Plant, vol. 2, no. 1, pp. 37–44, Jan. 1949, doi: 10.1111/J.1399-3054.1949.TB07646.X.
[49]       T. Hemberg, “Significance of Growth-Inhibiting Substances and Auxins for the Rest-Period of the Potato Tuber,” Physiol Plant, vol. 2, no. 1, pp. 24–36, Jan. 1949, doi: 10.1111/J.1399-3054.1949.TB07645.X.
[50]       L. M. Ng, K. Melcher, B. T. Teh, and H. E. Xu, “Abscisic acid perception and signaling: structural mechanisms and applications,” Acta Pharmacol Sin, vol. 35, no. 5, pp. 567–584, May 2014, doi: 10.1038/APS.2014.5.
[51]       G. Cui, X. Zhao, S. Liu, F. Sun, C. Zhang, and Y. Xi, “Beneficial effects of melatonin in overcoming drought stress in wheat seedlings,” Plant Physiol Biochem, vol. 118, pp. 138–149, Sep. 2017, doi: 10.1016/J.PLAPHY.2017.06.014.
[52]       J. Ye, S. Wang, X. Deng, L. Yin, B. Xiong, and X. Wang, “Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage,” Acta Physiol Plant, vol. 38, no. 2, pp. 1–13, Feb. 2016, doi: 10.1007/S11738-015-2045-Y/METRICS.
[53]       D. Liang et al., “Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress,” Sci Hortic, vol. 246, pp. 34–43, Feb. 2019, doi: 10.1016/J.SCIENTA.2018.10.058.
[54]       B. Liang et al., “Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress,” Environ Exp Bot, vol. 155, pp. 650–661, Nov. 2018, doi: 10.1016/J.ENVEXPBOT.2018.08.016.
[55]       C. N. Campos, R. G. Ávila, K. R. D. de Souza, L. M. Azevedo, and J. D. Alves, “Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants,” Agric Water Manag, vol. 211, pp. 37–47, Jan. 2019, doi: 10.1016/J.AGWAT.2018.09.025.
[56]       Y. Zhang, Ascorbic acid in plants: biosynthesis, regulation and enhancement. 2012.
[57]       C. Paciolla et al., “Vitamin C in Plants: From Functions to Biofortification,” Antioxidants, vol. 8, no. 11, 2019, doi: 10.3390/ANTIOX8110519.
[58]       P. Carillo et al., “Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat,” Funct Plant Biol, vol. 38, no. 2, p. 139, 2011, doi: 10.1071/FP10177.
[59]       L. D’Amelia, E. Dell’Aversana, P. Woodrow, L. F. Ciarmiello, and P. Carillo, “Metabolomics for crop improvement against salinity stress,” Salinity Responses and Tolerance in Plants, vol. 2, pp. 267–287, Jun. 2018, doi: 10.1007/978-3-319-90318-7_11/COVER.
[60]       P. Carillo, C. Cirillo, V. De Micco, C. Arena, S. De Pascale, and Y. Rouphael, “Morpho-anatomical, physiological and biochemical adaptive responses to saline water of Bougainvillea spectabilis Willd. trained to different canopy shapes,” Agric Water Manag, vol. 212, pp. 12–22, Feb. 2019, doi: 10.1016/J.AGWAT.2018.08.037.
[61]       S. S. Sharma and K. J. Dietz, “The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress,” J Exp Bot, vol. 57, no. 4, pp. 711–726, Mar. 2006, doi: 10.1093/JXB/ERJ073.
[62]       M. M. Islam et al., “Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells,” J Plant Physiol, vol. 166, no. 15, pp. 1587–1597, Oct. 2009, doi: 10.1016/J.JPLPH.2009.04.002.
[63]       M. N. Akhter Banu et al., “Proline and glycinebetaine ameliorated NaCl stress via scavenging of hydrogen peroxide and methylglyoxal but not superoxide or nitric oxide in tobacco cultured cells,” Biosci Biotechnol Biochem, vol. 74, no. 10, pp. 2043–2049, 2010, doi: 10.1271/BBB.100334.
[64]       D. Wei et al., “Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants,” Plant Sci, vol. 257, pp. 74–83, Apr. 2017, doi: 10.1016/J.PLANTSCI.2017.01.012.
[65]       X. Li et al., “The cotton GhWIN2 gene activates the cuticle biosynthesis pathway and influences the salicylic and jasmonic acid biosynthesis pathways,” BMC Plant Biol, vol. 19, no. 1, pp. 1–13, Aug. 2019, doi: 10.1186/S12870-019-1888-6/FIGURES/7.
[66]       B. Gupta and B. Huang, “Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization,” Int J Genomics, vol. 2014, 2014, doi: 10.1155/2014/701596.
[67]       M. G. Annunziata, L. F. Ciarmiello, P. Woodrow, E. Maximova, A. Fuggi, and P. Carillo, “Durum wheat roots adapt to salinity remodeling the cellular content of nitrogen metabolites and sucrose,” Front Plant Sci, vol. 7, p. 232631, Jan. 2017, doi: 10.3389/FPLS.2016.02035/BIBTEX.
[68]       P. Woodrow et al., “Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism,” Physiol Plant, vol. 159, no. 3, pp. 290–312, Mar. 2017, doi: 10.1111/PPL.12513.
[69]       J. Gorham, “Betaines in higher plants – biosynthesis and role in stress metabolism,” Amino Acids and their Derivatives in Higher Plants, pp. 173–204, May 1995, doi: 10.1017/CBO9780511721809.013.
[70]       W. P. Chen, P. H. Li, and T. H. H. Chen, “Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L.,” Plant Cell Environ, vol. 23, no. 6, pp. 609–618, Jun. 2000, doi: 10.1046/J.1365-3040.2000.00570.X.
[71]       M. Farooq, A. Wahid, D. J. Lee, O. Ito, and K. H. M. Siddique, “Advances in drought resistance of rice,” CRC Crit Rev Plant Sci, vol. 28, no. 4, pp. 199–217, Jul. 2009, doi: 10.1080/07352680902952173.
[72]       M. Farooq, A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra, “Plant drought stress: effects, mechanisms and management,” Agronomy for Sustainable Development 2009 29:1, vol. 29, no. 1, pp. 185–212, Jan. 2009, doi: 10.1051/AGRO:2008021.
[73]       M. Aown, S. Raza, M. Farrukh Saleem, M. Y. Ashraf, A. Ali, and H. N. Asghar, “Glycinebetaine applied under drought improved the physiological efficiency of wheat (Triticum aestivum L.) plantQ1Journal of soil science and plant nutrition; H-Index: 46 SJR: Q1  CORE: NA  ABDC: NA  FT50: NA,” researchgate.netMAS Raza, MF Saleem, MY Ashraf, A Ali, HN AsgharSoil Environ, 2012•researchgate.net, vol. 31, no. 1, pp. 67–71, 2012.
[74]       W. Mou et al., “Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening,” PLoS One, vol. 11, no. 4, Apr. 2016, doi: 10.1371/JOURNAL.PONE.0154072.
[75]       K. Nagy et al., “Double-balloon jejunal perfusion to compare absorption of vitamin E and vitamin E acetate in healthy volunteers under maldigestion conditions,” Eur J Clin Nutr, vol. 67, no. 2, pp. 202–206, Feb. 2013, doi: 10.1038/EJCN.2012.183.
[76]       E. Ali et al., “Tocopherol as plant protector: an overview of Tocopherol biosynthesis enzymes and their role as antioxidant and signaling molecules,” Acta Physiol Plant, vol. 44, no. 2, pp. 1–11, Feb. 2022, doi: 10.1007/S11738-021-03350-X/METRICS.
[77]       A. Dutta and S. K. Dutta, “Vitamin E and its role in the prevention of atherosclerosis and carcinogenesis: a review,” J Am Coll Nutr, vol. 22, no. 4, pp. 258–268, Aug. 2003, doi: 10.1080/07315724.2003.10719302.
[78]       D. K. Hincha, “Effects of alpha-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes,” FEBS Lett, vol. 582, no. 25–26, pp. 3687–3692, Oct. 2008, doi: 10.1016/J.FEBSLET.2008.10.002.
[79]       J. Jiang et al., “Overexpression of Medicago sativa TMT elevates the α-tocopherol content in Arabidopsis seeds, alfalfa leaves, and delays dark-induced leaf senescence,” Plant Sci, vol. 249, pp. 93–104, Aug. 2016, doi: 10.1016/J.PLANTSCI.2016.05.004.
[80]       O. Sytar, A. Kumar, D. Latowski, P. Kuczynska, K. Strzałka, and M. N. V. Prasad, “Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants,” Acta Physiol Plant, vol. 35, no. 4, pp. 985–999, Apr. 2013, doi: 10.1007/S11738-012-1169-6/METRICS.
[81]       V. M. Mokrosnop, “Functions of tocopherols in the cells of plants and other photosynthetic organisms,” Ukr Biochem J, vol. 86, no. 5, pp. 26–36, 2014, doi: 10.15407/UBJ86.05.026.
[82]       A. B. Lerner, J. D. Case, Y. Takahashi, T. H. Lee, and W. Mori, “Isolation of melatonin, the pineal gland factor that lightens melanocytes,” J Am Chem Soc, vol. 80, no. 10, p. 2587, May 1958, doi: 10.1021/JA01543A060/ASSET/JA01543A060.FP.PNG_V03.
[83]       M. B. Arnao and J. Hernández-Ruiz, “Melatonin: plant growth regulator and/or biostimulator during stress?,” Trends Plant Sci, vol. 19, no. 12, pp. 789–797, Dec. 2014, doi: 10.1016/J.TPLANTS.2014.07.006.
[84]       G. Di Bella, F. Mascia, L. Gualano, and L. Di Bella, “Melatonin Anticancer Effects: Review,” Int J Mol Sci, vol. 14, no. 2, p. 2410, Feb. 2013, doi: 10.3390/IJMS14022410.
[85]       M. Havaux, F. Eymery, S. Porfirova, P. Rey, and P. Dörmann, “Vitamin E Protects against Photoinhibition and Photooxidative Stress in Arabidopsis thaliana,” Plant Cell, vol. 17, no. 12, pp. 3451–3469, Dec. 2005, doi: 10.1105/TPC.105.037036.
[86]       F. S. A. Zaki et al., “The impact of α-tocopherol and nicotinamide on performance of lupine plant grown under sandy soil conditions,” Egypt J Chem, vol. 65, no. 132, pp. 1231–1240, Dec. 2022, doi: 10.21608/EJCHEM.2022.155711.6733.
[87]       Y. Zhang et al., “Rice tocopherol deficiency 1 encodes a homogentisate phytyltransferase essential for tocopherol biosynthesis and plant development in rice,” Plant Cell Rep, vol. 37, no. 5, pp. 775–787, May 2018, doi: 10.1007/S00299-018-2266-9.
[88]       J. Falk and S. Munné-Bosch, “Tocochromanol functions in plants: antioxidation and beyond,” J Exp Bot, vol. 61, no. 6, pp. 1549–1566, Apr. 2010, doi: 10.1093/JXB/ERQ030.
[89]       D. Hofius, M. R. Hajirezaei, M. Geiger, H. Tschiersch, M. Melzer, and U. Sonnewald, “RNAi-Mediated Tocopherol Deficiency Impairs Photoassimilate Export in Transgenic Potato Plants,” Plant Physiol, vol. 135, no. 3, p. 1256, 2004, doi: 10.1104/PP.104.043927.
[90]       H. Maeda, Y. Sakuragi, D. A. Bryant, and D. DellaPenna, “Tocopherols Protect Synechocystis sp. Strain PCC 6803 from Lipid Peroxidation,” Plant Physiol, vol. 138, no. 3, p. 1422, 2005, doi: 10.1104/PP.105.061135.
[91]       O. Kodad, R. Socias i Company, and J. M. Alonso, “Genotypic and Environmental Effects on Tocopherol Content in Almond,” Antioxidants, vol. 7, no. 1, Mar. 2018, doi: 10.3390/ANTIOX7010006.
[92]       A. Siger, M. Gawrysiak-Witulska, and I. Bartkowiak-Broda, “Antioxidant (Tocopherol and Canolol) Content in Rapeseed Oil Obtained from Roasted Yellow-Seeded Brassica napus,” J Am Oil Chem Soc, vol. 94, no. 1, pp. 37–46, Jan. 2017, doi: 10.1007/S11746-016-2921-7.
[93]       W. R et al., “QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars,” Mol Breed, vol. 38, no. 11, Nov. 2018, doi: 10.1007/S11032-018-0894-Y.
[94]       E. A. Hashish, S. A. Elgaml, A. El-Murr, and R. Khalil, “Nephroprotective and antioxidant significance of selenium and α-tocopherol on lead acetate-induced toxicity of Nile Tilapia (Oreochromis niloticus),” Fish Physiol Biochem, vol. 41, no. 3, pp. 651–660, Jun. 2015, doi: 10.1007/S10695-015-0035-Z/METRICS.
[95]       S. Kasperczyk et al., “α-Tocopherol supplementation and the oxidative stress, homocysteine, and antioxidants in lead exposure,” Arch Environ Occup Health, vol. 72, no. 3, pp. 153–158, May 2017, doi: 10.1080/19338244.2016.1182112.
[96]       L. Spicher et al., “Essential role for phytol kinase and tocopherol in tolerance to combined light and temperature stress in tomato,” J Exp Bot, vol. 68, no. 21–22, pp. 5845–5856, Dec. 2017, doi: 10.1093/JXB/ERX356.
[97]       S. Sereflioglu, B. S. Dinler, and E. Tasci, “Alpha-tocopherol-dependent salt tolerance is more related with auxin synthesis rather than enhancement antioxidant defense in soybean roots,” Acta Biol Hung, vol. 68, no. 1, pp. 115–125, Mar. 2017, doi: 10.1556/018.68.2017.1.10.
[98]       Y. Tang, X. Fu, Q. Shen, and K. Tang, “Roles of MPBQ-MT in Promoting α/γ-Tocopherol Production and Photosynthesis under High Light in Lettuce,” PLoS One, vol. 11, no. 2, Feb. 2016, doi: 10.1371/JOURNAL.PONE.0148490.
[99]       A. Siger, M. Józefiak, and P. Górnas, “Cold-pressed and hot-pressed rapeseed oil: The effects of roasting and seed moisture on the antioxi- dant activity, canolol, and tocopherol level,” Acta Sci Pol Technol Aliment, vol. 16, no. 1, pp. 69–81, Jan. 2017, doi: 10.17306/J.AFS.2017.0458.
[100]     E. Ali et al., “Indigenous Tocopherol Improves Tolerance of Oilseed Rape to Cadmium Stress,” Front Plant Sci, vol. 11, p. 547133, Oct. 2020, doi: 10.3389/FPLS.2020.547133/BIBTEX.
[101]     S. Jin and H. Daniell, “Expression of γ-tocopherol methyltransferase in chloroplasts results in massive proliferation of the inner envelope membrane and decreases susceptibility to salt and metal-induced oxidative stresses by reducing reactive oxygen species,” Plant Biotechnol J, vol. 12, no. 9, pp. 1274–1285, Dec. 2014, doi: 10.1111/PBI.12224.
[102]     N. Hussain et al., “Response of seed tocopherols in oilseed rape to nitrogen fertilizer sources and application rates,” J Zhejiang Univ Sci B, vol. 15, no. 2, p. 181, 2014, doi: 10.1631/JZUS.B1300036.
[103]     C. Schuy et al., “Deciphering the genetic basis for vitamin E accumulation in leaves and grains of different barley accessions,” Scientific Reports 2019 9:1, vol. 9, no. 1, pp. 1–17, Jul. 2019, doi: 10.1038/s41598-019-45572-7.
[104]     D. Seely et al., “Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials,” Integr Cancer Ther, vol. 11, no. 4, pp. 293–303, Dec. 2012, doi: 10.1177/1534735411425484.
[105]     R. Hardeland, “New approaches in the management of insomnia: weighing the advantages of prolonged-release melatonin and synthetic melatoninergic agonists,” Neuropsychiatr Dis Treat, vol. 5, no. 1, pp. 341–354, 2009, doi: 10.2147/NDT.S4234.
[106]     M. B. Arnao and J. Hernández-Ruiz, “Functions of melatonin in plants: a review,” J Pineal Res, vol. 59, no. 2, pp. 133–150, Sep. 2015, doi: 10.1111/JPI.12253.
[107]     G. J. Ahammed et al., “Role of Melatonin in Arbuscular Mycorrhizal Fungi-Induced Resistance to Fusarium Wilt in Cucumber,” Phytopathology, vol. 110, no. 5, pp. 999–1009, May 2020, doi: 10.1094/PHYTO-11-19-0435-R.
[108]     W. Gao, Y. Zhang, Z. Feng, Q. Bai, J. He, and Y. Wang, “Effects of Melatonin on Antioxidant Capacity in Naked Oat Seedlings under Drought Stress,” Molecules, vol. 23, no. 7, 2018, doi: 10.3390/MOLECULES23071580.
[109]     N. Zhang et al., “Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.),” J Pineal Res, vol. 54, no. 1, pp. 15–23, Jan. 2013, doi: 10.1111/J.1600-079X.2012.01015.X.
[110]     M. A. Salh and U. H. Mheidi, “Melatonin as Stress Marker in Fennel Plant,” IOP Conf Ser Earth Environ Sci, vol. 904, no. 1, p. 012032, Nov. 2021, doi: 10.1088/1755-1315/904/1/012032.
[111]     D. X. Tan et al., “Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science,” J Exp Bot, vol. 63, no. 2, pp. 577–597, Jan. 2012, doi: 10.1093/JXB/ERR256.
[112]     M. Jafari and A. Shahsavar, “The application of artificial neural networks in modeling and predicting the effects of melatonin on morphological responses of citrus to drought stress,” PLoS One, vol. 15, no. 10, p. e0240427, Oct. 2020, doi: 10.1371/JOURNAL.PONE.0240427.
[113]     J. Ye, W. Yang, Y. Li, S. Wang, L. Yin, and X. Deng, “Seed Pre-Soaking with Melatonin Improves Wheat Yield by Delaying Leaf Senescence and Promoting Root Development,” Agronomy 2020, Vol. 10, Page 84, vol. 10, no. 1, p. 84, Jan. 2020, doi: 10.3390/AGRONOMY10010084.
[114]     L. Liu, D. Li, Y. Ma, H. Shen, S. Zhao, and Y. Wang, “Combined Application of Arbuscular Mycorrhizal Fungi and Exogenous Melatonin Alleviates Drought Stress and Improves Plant Growth in Tobacco Seedlings,” J Plant Growth Regul, vol. 40, no. 3, pp. 1074–1087, Jun. 2021, doi: 10.1007/S00344-020-10165-6/METRICS.
[115]     A. Rehaman et al., “Melatonin in Plant Defense against Abiotic Stress,” Forests 2021, Vol. 12, Page 1404, vol. 12, no. 10, p. 1404, Oct. 2021, doi: 10.3390/F12101404.
[116]     P. Wang, X. Sun, C. Li, Z. Wei, D. Liang, and F. Ma, “Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple,” J Pineal Res, vol. 54, no. 3, pp. 292–302, Apr. 2013, doi: 10.1111/JPI.12017.
[117]     C. Li, D. X. Tan, D. Liang, C. Chang, D. Jia, and F. Ma, “Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress,” J Exp Bot, vol. 66, no. 3, pp. 669–680, Feb. 2015, doi: 10.1093/JXB/ERU476.
[118]     J. Ruan et al., “Jasmonic Acid Signaling Pathway in Plants,” Int J Mol Sci, vol. 20, no. 10, May 2019, doi: 10.3390/IJMS20102479.
[119]     C. Wasternack and M. Strnad, “Jasmonate signaling in plant stress responses and development - active and inactive compounds,” N Biotechnol, vol. 33, no. 5 Pt B, pp. 604–613, 2016, doi: 10.1016/J.NBT.2015.11.001.
[120]     Q. Nisa, N. Mir, G. Gulzar, K. U. Nisa, and N. Tarfeen, “Techniques in Plant Oxylipins Profiling,” Phyto-Oxylipins, pp. 243–254, Mar. 2023, doi: 10.1201/9781003316558-16.
[121]     Q. Hou, G. Ufer, and D. Bartels, “Lipid signalling in plant responses to abiotic stress,” Plant Cell Environ, vol. 39, no. 5, pp. 1029–1048, May 2016, doi: 10.1111/PCE.12666.
[122]     G. Z. Han, “Evolution of jasmonate biosynthesis and signaling mechanisms,” J Exp Bot, vol. 68, no. 6, pp. 1323–1331, 2017, doi: 10.1093/JXB/ERW470.
[123]     E. E. Farmer and C. A. Ryan, “Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors,” Plant Cell, vol. 4, no. 2, pp. 129–134, Feb. 1992, doi: 10.1105/TPC.4.2.129.
[124]     N. Taki et al., “12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis,” Plant Physiol, vol. 139, no. 3, pp. 1268–1283, 2005, doi: 10.1104/PP.105.067058.
[125]     M. C. Matthes, T. J. A. Bruce, J. Ton, P. J. Verrier, J. A. Pickett, and J. A. Napier, “The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence,” Planta, vol. 232, no. 5, pp. 1163–1180, 2010, doi: 10.1007/S00425-010-1244-4.
[126]     T. Heitz, E. Smirnova, E. Widemann, Y. Aubert, F. Pinot, and R. Ménard, “The Rise and Fall of Jasmonate Biological Activities,” Subcell Biochem, vol. 86, pp. 405–426, Mar. 2016, doi: 10.1007/978-3-319-25979-6_16.
[127]     T. Koch, K. Bandemer, and W. Boland, “Biosynthesis of cis-Jasmone: a pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase?,” Helv Chim Acta, vol. 80, no. 3, pp. 838–850, May 1997, doi: 10.1002/HLCA.19970800318.
[128]     M. I, “Jasmonates and salicylic acid: Evolution of defense hormones in land plants,” Curr Opin Plant Biol, vol. 76, 2023, doi: 10.1016/J.PBI.2023.102470.
[129]     A. Meyer, O. Miersch, C. Büttner, W. Dathe, and G. Sembdner, “Occurrence of the plant growth regulator jasmonic acid in plants,” J Plant Growth Regul, vol. 3, no. 1, pp. 1–8, 1984, doi: 10.1007/BF02041987/METRICS.
[130]     A. Ghasemi Pirbalouti, S. E. Sajjadi, and K. Parang, “A review (research and patents) on jasmonic acid and its derivatives,” Arch Pharm (Weinheim), vol. 347, no. 4, pp. 229–239, 2014, doi: 10.1002/ARDP.201300287.
[131]     J. Memelink, R. Verpoorte, and J. W. Kijne, “ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism,” Trends Plant Sci, vol. 6, no. 5, pp. 212–219, 2001, doi: 10.1016/S1360-1385(01)01924-0.
[132]     T. A. Dar, M. Uddin, M. M. A. Khan, K. R. Hakeem, and H. Jaleel, “Jasmonates counter plant stress: A Review,” Environ Exp Bot, vol. 115, pp. 49–57, Jul. 2015, doi: 10.1016/J.ENVEXPBOT.2015.02.010.
[133]     Y. Yoshida, R. Sano, T. Wada, J. Takabayashi, and K. Okada, “Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis,” Development, vol. 136, no. 6, pp. 1039–1048, Mar. 2009, doi: 10.1242/DEV.030585.
[134]     W. Truman, M. H. Bennet, I. Kubigsteltig, C. Turnbull, and M. Grant, “Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates,” Proc Natl Acad Sci U S A, vol. 104, no. 3, p. 1075, Jan. 2007, doi: 10.1073/PNAS.0605423104.
[135]     Z. A. Abdelgawad, A. A. Khalafaallah, M. M. Abdallah, Z. A. Abdelgawad, A. A. Khalafaallah, and M. M. Abdallah, “Impact of Methyl Jasmonate on Antioxidant Activity and Some Biochemical Aspects of Maize Plant Grown under Water Stress Condition,” Agricultural Sciences, vol. 5, no. 12, pp. 1077–1088, Oct. 2014, doi: 10.4236/AS.2014.512117.
[136]     H. Wu, X. Wu, Z. Li, L. Duan, and M. Zhang, “Physiological Evaluation of Drought Stress Tolerance and Recovery in Cauliflower (Brassica oleracea L.) Seedlings Treated with Methyl Jasmonate and Coronatine,” J Plant Growth Regul, vol. 31, no. 1, pp. 113–123, Mar. 2012, doi: 10.1007/S00344-011-9224-X/METRICS.
[137]     N. H. Evans, “Modulation of Guard Cell Plasma Membrane Potassium Currents by Methyl Jasmonate,” Plant Physiol, vol. 131, no. 1, pp. 8–11, Jan. 2003, doi: 10.1104/PP.014266.
[138]     R. F. Horton, “Methyl Jasmonate and Transpiration in Barley,” Plant Physiol, vol. 96, no. 4, p. 1376, 1991, doi: 10.1104/PP.96.4.1376.
[139]     Z. B. Qiu, J. L. Guo, A. J. Zhu, L. Zhang, and M. M. Zhang, “Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress,” Ecotoxicol Environ Saf, vol. 104, no. 1, pp. 202–208, 2014, doi: 10.1016/J.ECOENV.2014.03.014.
[140]     A. Cotado, M. Müller, M. Morales, and S. Munné-Bosch, “Linking jasmonates with pigment accumulation and photoprotection in a high-mountain endemic plant, Saxifraga longifolia,” Environ Exp Bot, vol. 154, pp. 56–65, Oct. 2018, doi: 10.1016/J.ENVEXPBOT.2017.12.018.
[141]     D. Suhita, A. S. Raghavendra, J. M. Kwak, and A. Vavasseur, “Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure,” Plant Physiol, vol. 134, no. 4, pp. 1536–1545, 2004, doi: 10.1104/PP.103.032250.
[142]     Q. Xing, J. Liao, S. Cao, M. Li, T. Lv, and H. Qi, “CmLOX10 positively regulates drought tolerance through jasmonic acid -mediated stomatal closure in oriental melon (Cucumis melo var. makuwa Makino),” Scientific Reports 2020 10:1, vol. 10, no. 1, pp. 1–14, Oct. 2020, doi: 10.1038/s41598-020-74550-7.
[143]     W. Zhao et al., “Jasmonic acid enhances osmotic stress responses by MYC2-mediated inhibition of protein phosphatase 2C1 and response regulators 26 transcription factor in tomato,” Plant J, vol. 113, no. 3, pp. 546–561, Feb. 2023, doi: 10.1111/TPJ.16067.
[144]     V. Conti et al., “Morpho‐physiological classification of italian tomato cultivars (Solanum lycopersicum l.) according to drought tolerance during vegetative and reproductive growth,” Plants, vol. 10, no. 9, p. 1826, Sep. 2021, doi: 10.3390/PLANTS10091826/S1.
[145]     A. Ullah et al., “Phytohormones enhanced drought tolerance in plants: a coping strategy,” Environmental Science and Pollution Research, vol. 25, no. 33, pp. 33103–33118, Nov. 2018, doi: 10.1007/S11356-018-3364-5/METRICS.
[146]     Y. Kim, Y. S. Chung, E. Lee, P. Tripathi, S. Heo, and K. H. Kim, “Root Response to Drought Stress in Rice (Oryza sativa L.),” Int J Mol Sci, vol. 21, no. 4, Feb. 2020, doi: 10.3390/IJMS21041513.
[147]     P. M. Guimaraes et al., “Root Transcriptome Analysis of Wild Peanut Reveals Candidate Genes for Nematode Resistance,” PLoS One, vol. 10, no. 10, p. e0140937, Oct. 2015, doi: 10.1371/JOURNAL.PONE.0140937.
[148]     M. Horbowicz, H. Mioduszewska, D. Koczkodaj, and M. Saniewski, “The effect of cis-jasmone, jasmonic acid and methyl jasmonate on accumulation of anthocyanins and proanthocyanidins in seedlings of common buckwheat [Fagipyrum esculentum Moench],” Acta Societatis Botanicorum Poloniae, vol. 78, no. 4, pp. 271–277, 2009.
[149]     H. M. Evans and K. ScottBishop, “ON THE EXISTENCE OF A HITHERTO UNRECOGNIZED DIETARY FACTOR ESSENTIAL FOR REPRODUCTION,” Science, vol. 56, no. 1458, pp. 650–651, 1922, doi: 10.1126/SCIENCE.56.1458.650.
[150]     B. Sure, “DIETARY REQUIREMENTS FOR REPRODUCTION: II. THE EXISTENCE OF A SPECIFIC VITAMIN FOR REPRODUCTION,” Journal of Biological Chemistry, vol. 58, no. 3, pp. 693–709, Jan. 1924, doi: 10.1016/S0021-9258(18)85329-7.
[151]     Y. Li et al., “SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum),” PLoS One, vol. 12, no. 2, Feb. 2017, doi: 10.1371/JOURNAL.PONE.0172466.
[152]     E. Cervantes Zavala, “Dual Application of Brevundimonas vesicularis and Pseudomonas koreensis Confers Drought Stress Tolerance via Regulation of Gene Expression, Phytohormone Synthesis and Antioxidant Systems in Arabidopsis thaliana,” 2022.
[153]     F. Wang, G. Yu, and P. Liu, “Transporter-Mediated Subcellular Distribution in the Metabolism and Signaling of Jasmonates,” Front Plant Sci, vol. 10, Mar. 2019, doi: 10.3389/FPLS.2019.00390.
[154]     J. Midzi, D. W. Jeffery, U. Baumann, S. Rogiers, S. D. Tyerman, and V. Pagay, “Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication,” Plants (Basel), vol. 11, no. 19, Oct. 2022, doi: 10.3390/PLANTS11192566.
[155]     B. Hause, G. Hause, C. Kutter, O. Miersch, and C. Wasternack, “Enzymes of Jasmonate Biosynthesis Occur in Tomato Sieve Elements,” Plant Cell Physiol, vol. 44, no. 6, pp. 643–648, Jun. 2003, doi: 10.1093/PCP/PCG072.
[156]     A. Daszkowska-Golec and I. Szarejko, “Open or close the gate - Stomata action under the control of phytohormones in drought stress conditions,” Front Plant Sci, vol. 4, no. MAY, p. 44747, May 2013, doi: 10.3389/FPLS.2013.00138/BIBTEX.
[157]     M. A. Hossain, S. Munemasa, M. Uraji, Y. Nakamura, I. C. Mori, and Y. Murata, “Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in Arabidopsis,” Plant Physiol, vol. 156, no. 1, pp. 430–438, 2011, doi: 10.1104/PP.111.172254.
[158]     E. E. Farmer and C. A. Ryan, “Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves.,” Proc Natl Acad Sci U S A, vol. 87, no. 19, p. 7713, 1990, doi: 10.1073/PNAS.87.19.7713.
[159]     M. J. Mueller, “Enzymes involved in jasmonic acid biosynthesis,” Physiol Plant, vol. 100, no. 3, pp. 653–663, Jul. 1997, doi: 10.1111/J.1399-3054.1997.TB03072.X.
[160]     C. Wasternack, “Jasmonates: An Update on Biosynthesis, Signal Transduction and Action in Plant Stress Response, Growth and Development,” Ann Bot, vol. 100, no. 4, p. 681, Oct. 2007, doi: 10.1093/AOB/MCM079.
[161]     M. Mahmood, S. S. Bidabadi, C. Ghobadi, and D. J. Gray, “Effect of methyl jasmonate treatments on alleviation of polyethylene glycol -mediated water stress in banana (Musa acuminata cv. ‘Berangan’, AAA) shoot tip cultures,” Plant Growth Regul, vol. 68, no. 2, pp. 161–169, Nov. 2012, doi: 10.1007/S10725-012-9702-6/METRICS.
[162]     K. Kosová, P. Vítámvás, M. O. Urban, M. Klíma, A. Roy, and I. Tom Prášil, “Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective,” Int J Mol Sci, vol. 16, no. 9, pp. 20913–20942, Sep. 2015, doi: 10.3390/IJMS160920913.
[163]     A. J. K. Koo and G. A. Howe, “The wound hormone jasmonate,” Phytochemistry, vol. 70, no. 13–14, pp. 1571–1580, Sep. 2009, doi: 10.1016/J.PHYTOCHEM.2009.07.018.
[164]     L. Pauwels, D. Inzé, and A. Goossens, “Jasmonate-inducible gene: What does it mean?,” Trends Plant Sci, vol. 14, no. 2, pp. 87–91, Feb. 2009, doi: 10.1016/J.TPLANTS.2008.11.005.
[165]     D. Todaka, K. Shinozaki, and K. Yamaguchi-Shinozaki, “Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants,” Front Plant Sci, vol. 6, no. FEB, Feb. 2015, doi: 10.3389/FPLS.2015.00084.
[166]     J. Fu, H. Wu, S. Ma, D. Xiang, R. Liu, and L. Xiong, “OSJAZ1 attenuates drought resistance by regulating JA and ABA signaling in rice,” Front Plant Sci, vol. 8, p. 321958, Dec. 2017, doi: 10.3389/FPLS.2017.02108/BIBTEX.
 
 
 
    • Article View: 165
    • PDF Download: 163
Kirkuk University Journal for Agricultural Sciences (KUJAS)
Volume 15, Issue 3
September 2024
Page 52-69
Files
  • XML
  • PDF 886.93 K
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
Statistics
  • Article View: 165
  • PDF Download: 163

APA

AbdulKafoor, A., ALHabeeb, M., shenawa, M., Al-Rawi, A., Al-Khalidi, F., Al-Fahdawy, A., Mhedi, O., & Al-Issawi, M. (2024). Drought Stress and Growth Regulation: Review in the Role of Hormonal Regulation. Kirkuk University Journal for Agricultural Sciences (KUJAS), 15(3), 52-69. doi: 10.58928/ku24.15307

MLA

Adil Hais AbdulKafoor; Marwa Ismail ALHabeeb; muhanad hamed shenawa; Ali Fadhil Al-Rawi; Falah Hasan Al-Khalidi; Ahmed Jabbar Al-Fahdawy; Osama Hussein Mhedi; Mohammed Hamdan Al-Issawi. "Drought Stress and Growth Regulation: Review in the Role of Hormonal Regulation". Kirkuk University Journal for Agricultural Sciences (KUJAS), 15, 3, 2024, 52-69. doi: 10.58928/ku24.15307

HARVARD

AbdulKafoor, A., ALHabeeb, M., shenawa, M., Al-Rawi, A., Al-Khalidi, F., Al-Fahdawy, A., Mhedi, O., Al-Issawi, M. (2024). 'Drought Stress and Growth Regulation: Review in the Role of Hormonal Regulation', Kirkuk University Journal for Agricultural Sciences (KUJAS), 15(3), pp. 52-69. doi: 10.58928/ku24.15307

VANCOUVER

AbdulKafoor, A., ALHabeeb, M., shenawa, M., Al-Rawi, A., Al-Khalidi, F., Al-Fahdawy, A., Mhedi, O., Al-Issawi, M. Drought Stress and Growth Regulation: Review in the Role of Hormonal Regulation. Kirkuk University Journal for Agricultural Sciences (KUJAS), 2024; 15(3): 52-69. doi: 10.58928/ku24.15307

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Glossary
  • Sitemap

News

  • Kirkuk University Journal For Agricultural Sciences ... 2025-12-01
  • Kirkuk University Journal of Agricultural Sciences ... 2026-01-07

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com