Authors
1
Kirkuk university-college of agriculture-department of horticulutre
2
Dept. of Horticulture and Landscaping Design\ College of Agriculture\ University of Kirkuk\Kirkuk\ IRAQ
3
Dep. Horticulture, College of Agriculture, University of Kirkuk, Kirkuk, IRAQ
,
Document Type : Research Paper
Abstract
This experiment was carried out in the Plant Cells and Tissue Culture Laboratory of Horticulture and Landscaping Design Department / College of Agriculture / University of Kirkuk - IRAQ, to study the effect of auxin’s in different concentrations and MS media (full and ½) salt strength on rooting response of Petunia hybrida. The regenerated shoots explants from the multiplication stage were transferred to the rooting stage cultured on MS media ( full and ½ ) salts strength supplemented with different concentrations of IBA at ( 0.0, 0.25, 0.50, 0.75, and 1.0 ) mg.L-1, and NAA at ( 0.0, 0.25, 0.50, 0.75, and 1.0 ) mg.L-1. After 6 weeks of transforming, data showed that, the response percentage was ( 100% ) for MS media ( full and ½ ) salt strength supplemented with different concentrations of IBA and NAA beside control treatment. The best number of roots ( 29.70 root.part-1 ) and the length of the longest root ( 7.44 cm ) were recorded by MS ½ strength supplemented with IBA (1.0 mg.L-1) compared with other concentrations, and it was the highest results compared with MS full strength supplemented with different concentration of IBA. Moreover, results obtained that MS ½ strength supplemented with NAA ( 1.0 mg.L-1 ) recorded the best number of roots ( 18.70 root.part-1 ) and the length of the longest root ( 2.97 cm ) compared with the other concentrations, while it was the best result compared with MS full strength supplemented with different concentrations of NAA.
References:
- Karagöz, F. P., Dursun, A., and Karaşal, M. (2022). A review: use of soilless culture techniques in ornamental plants. Ornamental Horticulture, 28, 172-180.
- Quattrocchio, F., Wing, J., van der Woude, K., Souer, E., de Vetten, N., Mol, J., and Koes, R. (1999). Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color. The Plant Cell, 11(8), 1433-1444.
- Särkinen, T., Bohs, L., Olmstead, R. G., and Knapp, S. (2013). A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC evolutionary biology, 13, 1-15.
- United States Department of Agriculture (USDA)-National Agricultural Statistics Service (NASS) 2008. Floriculture crops 2007 summary. [Internet].
- Stehmann, J. R., Lorenz-Lemke, A. P., Freitas, L. B., and Semir, J. (2009). The genus petunia. Petunia: evolutionary, developmental and physiological genetics, 1-28.
- Al-Hajaj, M, K. (1938). Herbaceous ornamental plants. Hindawi institution, p:106-107.
- Tegen, H., and Mohammed, W. (2016). The role of plant tissue culture to supply disease free planting materials of major horticultural crops in Ethiopia. Journal of Biology, Agriculture and Healthcare, 6(1), 122-129.
- Vu, N. H., Anh, P. H., and Nhut, D. T. (2006). The role of sucrose and different cytokinins in the in vitro floral morphogenesis of rose (hybrid tea) cv.“First Prize”. Plant Cell, Tissue and Organ Culture, 87(3), 315-320.
- Thakur, S., Hashmi, S., Mishra, S., Ekka, S. K., Kushwaha, A., and Kujur, R. (2024). A Review on Plant Tissue Culture. Asian Journal of Biology, 20(2), 14-18.
- Brumos, J., Robles, L. M., Yun, J., Vu, T. C., Jackson, S., Alonso, J. M., and Stepanova, A. N. (2018). Local auxin biosynthesis is a key regulator of plant development. Developmental cell, 47(3), 306-318.
- Lv, B., Yan, Z., Tian, H., Zhang, X., and Ding, Z. (2019). Local auxin biosynthesis mediates plant growth and development. Trends in plant science, 24(1), 6-9.
- Bisht, V., Rawat, J. M., Gaira, K. S., Purohit, S., Anand, J., Sinha, S., ... and Rawat, B. (2024). Assessment of genetic homogeneity of in-vitro propagated apple root stock MM 104 using ISSR and SCoT primers. BMC Plant Biology, 24(1), 240.
- Rahdari, P., Khosroabadi, M., Delfani, K., and Hoseini, S. M. (2014). Effect of different concentration of plant hormones (IBA and NAA) on rooting and growth factors in root and stem cuttings of Cordyline terminalis. Journal of Medical and Bioengineering Vol, 3(3).
- Costa, E. M., Loss, A., Pereira, H. P. N., and Almeida, J. F. (2015). Rooting of Bougainvillea spectabilis Willd. stem cuttings using indolbutyric acid. Acta Agronomica, 64(3), 205-210.
- Al-Rawy, Khasha Mahmoud and Abdul Aziz Mohammed Khalaf Allah (1980). Design and analysis of agricultural experiments. Dar Al Kutub Printing Press, Mosul University, Iraq.
- SAS Inst. Inc. )2002(. Statistical analysis software, Version 9.4 for windows, SAS Institute Inc. Cary. NC. USA.
- Dietz, A., Kutschera, U., and Ray, P. M. (1990). Auxin enhancement of mRNAs in epidermis and internal tissues of the pea stem and its significance for control of elongation. Plant Physiology, 93(2), 432-438.
- Hartmann, H. T., and Kester, D. E. (1975). Plant propagation: principles and practices. Prentice-Hall..
- Blakely, L. M., Rodaway, S. J., Hollen, L. B., and Croker, S. G. (1972). Control and kinetics of branch root formation in cultured root segments of Haplopappus ravenii. Plant Physiology, 50(1), 35-42.
- Sehrawat, S. K., Poonia, A. K., Kajla, S., and Bhat, S. (2016). Production of strawberry plant by in vitro propagation. Research on Crops, 17(3), 545-549.
- Budiono, R., Setiawati, T., Pitaloka, G. G., Anggreini, L., and Nurzaman, M. (2016). Mikropropagasi stroberi (Fragaria x ananassa Var. earlibrite) dengan penambahan BA (Benzyl adenine) dan IBA (Indole butyric acid) pada media MS (murashige and skoog). Semin. Nas. II Tahun, 2016, 1126-1138.
- Nornakhum, Y., and Junkasiraporn, S. (2019). Effect of Cytokinins and Auxin on in vitro propagation of Fragaria x ananassa Duch. cv. Pharachatan 80. Burapha Science Journal, 1190-1204.
- Yousef, H. A.; H. A. Idris and R. M. Mansur. (2019). “Impact of Indole-3-Butyric Acid (IBA) on the Root Induction of Arbutus Pavarii Pamp (Lybian Strawberry Tree) in in Vitro Culture.” Asian Journal of Research in Agriculture and Forestry 4, no. 3: 1–6. https://doi.org/10.9734/ajraf/2019/v4i330062.
- Naing, A. H., Kim, S. H., Chung, M. Y., Park, S. K., and Kim, C. K. (2019). In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant methods, 15, 1-10.
- Hartman, H. T; D. E. Kester and F. T. Davies. (2002). “Plant Propagation: Principles and Practices 7th Edition Prentice Hall Publishers.” New Jersey.
- Mroue, S., Simeunovic, A., and Robert, H. S. (2018). Auxin production as an integrator of environmental cues for developmental growth regulation. Journal of experimental botany, 69(2), 201-212.
- Hinnen, M. G. J., Pierik, R. L. M., and Bronsema, F. B. F. (1989). The influence of macronutrients and some other factors on growth of Phalaenopsis hybrid seedlings in vitro. Scientia Horticulturae, 41(1-2), 105-116.
- Debergh, P., De Riek, J., and Matthys, D. (1994). Nutrient supply and growth of plants in culture. Physiology, growth and development of plants in culture, 58-68.
- Hyndman, S. F., Hasegawa, P. M., and Bressan, R. A. (1982). Of Mineral Salts. HortScience, 17(1), 82-83.
- Moharami, L., Hosseini, B., Ghotbi Ravandi, E., and Jafari, M. (2014). Effects of plant growth regulators and explant types on in vitro direct plant regeneration of Agastache foeniculum, an important medicinal plant. In Vitro Cellular and Developmental Biology-Plant, 50, 707-711.
- Khater, M. A., and Elashtokhy, M. M. A. (2015). Effect of growth regulators on in vitro production of Hyoscyamus aureus L. and tropane alkaloids. International Journal of ChemTech Research, 11(8), 113-119.