,
Document Type : Research Paper
Abstract
Grapevine cuttings (canes) inoculated with Phaeoacremonium species (Ph. aleophilum and Ph. hungaricum) exhibited brownish discoloration and necrotic cankers. In a dual culture antagonism assay, Trichoderma harzianum demonstrated the highest efficacy, inhibiting Ph. aleophilum (93.3%) and Ph. hungaricum (75.8%) by rapidly colonizing the medium and competing the pathogens, covering over three-fourths of the plate. The food poisoning assay further confirmed T. harzianum as the most potent antagonist, with inhibition rates of 86.8% for Ph. aleophilum and 70.5% for Ph. hungaricum, followed by Bacillus subtilis (80.3% and 61.6%, respectively). Saccharomyces cerevisiae exhibited strong suppression of Ph. minimum (80.4%) but limited inhibition of Ph. hungaricum (17%), while Clonostachys rosea inhibited Ph. aleophilum (67.5%) and Ph. hungaricum (42.3%). The potential dissemination of bacterial and fungal biocontrol agents via nursery propagation materials was investigated by assessing their efficacy against Phaeoacremonium aleophilum and Ph. hungaricum in detached grapevine canes. Treatments included bacterial strains (Pseudomonas fluorescens, Bacillus subtilis) and fungal strains (Trichoderma harzianum, Clonostachys rosea, Saccharomyces cerevisiae). Among these, Clonostachys rosea demonstrated the highest antagonistic activity, significantly reducing canker lengths to 10.6 mm and 13 mm for Ph. aleophilum and Ph. hungaricum, respectively. In contrast, P. fluorescens was the least effective, with canker lengths of 21.3 mm. T. harzianum, B. subtilis, and S. cerevisiae also limited disease development to varying extents. A detached cane assay confirmed the efficacy of these antagonists, with C. rosea again showing the strongest suppression. These results highlight the potential of C. rosea as a promising biological control agent against grapevine trunk pathogens.
- Auger, J., et al. (2005). "Identification of Phaeoacremonium species in diseased grapevines." Phytopathologia Mediterranea, 44(2), 139-144.
- Haleem, R. A., Abdullah, S. K., & Jubraell, J. M. S. (2013). Pathogenicity of Phaeoacremonium aleophilum associated with grapevine decline in Kurdistan Region, Iraq. Science Journal of University of Zakho, 1(2), 612–619.
- Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing grapevine trunk diseases with respect to etiology and epidemiology: Current strategies and future prospects. Plant Disease, 102(1), 12–39.
- Serra, S., Mannoni, M. A., & Ligios, V. (2008). Phenolic compounds as a defense response of grapevine woody tissues to fungal pathogens. Phytopathologia Mediterranea, 47(1), 51–57.
- Úrbez-Torres, J. R. (2011). The status of Botryosphaeriaceae species infecting grapevines. Phytopathol. Mediterr. 50, S5–S45.
- Mugnai, L., Graniti, A., and Surico, G. (1999). Esca (Black measles) and brown wood-streaking: two old and elusive diseases of grapevines. Plant Dis. 83, 404–418. doi: 10.1094/pdis.1999.83.5.404.
- Fourie, P., and F. Hallen. (2004). Proactive control of Petri disease of grapevine through treatment of propagation material. Plant Disease 88:1241 1245.
- Aroca A., D. Gramaje, J. Armengol, J. García-Jiménez and R. Raposo, (2010). Evaluation of grapevine nursery process as a source of Phaeoacremonium and Phaeomoniella chlamydospora and occurrence of trunk disease pathogens in rootstock mother vines in Spain. European Journal of Plant Pathology 126, 165–174.
- Billones-Baaijens, R., & Savocchia, S. (2019). A review of Botryosphaeriaceae species associated with grapevine trunk diseases in Australia and New Zealand. Australasian Plant Pathology, 48, 3–18. doi: 10.1007/ s13313-018-0585-5.
- Whitelaw-Weckert, M. A., Rahman, L., Appleby, L. M., Hall, A., Clark, A. C., Waite, H., et al. (2013). Co- infection by Botryosphaeriaceae and Ilyonectria fungi during propagation causes decline of young grafted grapevines. Plant Pathology, 62, 1226–1237. doi: 10.1111/ppa.12059.
- Wicks, T., & Davies, K. (1999). The effect of Eutypa on grapevine yield. Australian Grape Grower and Wine-maker, 426a, 15–16
- Scheck, H., Vasquez, S. J., Fogle, D., & Gubler, W. D. (1998). Three Phaeoacremonium cause young grapevine decline in California. Plant Disease, 82, 590.
- Haleem, R. A.; S. K. Abdullah; and J. M. S. Jubrieel (2011). Morphological and molecular identification of Phaeoacremonium aleophilum associated with grapevine decline phenomena in Duhok governorate. J. Basrah Researches (Sci.) 37:1- 8.
- Haleem, R. (2024). Phaeoacremonium hungaricum, a species causing grapevine wood necrosis in Iraq. Acta Agriculturae Slovenica, 120(3), 1−8.
- Silva-Valderrama, I., Toapanta, D., Miccono, M.D.L.A., Lolas, M., Díaz, G.A., Cantu, D., and Castro, A. (2021). Biocontrol potential of grapevine endophytic and rhizospheric fungi against trunk pathogens. Frontiers in Microbiology, 11: 614620.
- Leal, F., Silva, A. B., & Oliveira, P. (2023a). A review on biological control of grapevine trunk diseases. Phytopathology Research, 22(2), 45-60. https://doi.org/10.1007/s11618-022-01095-7
- Geiger, A., et al. (2022). "Control of grapevine trunk diseases using Clonostachys rosea." Biological Control, 160, 104546.
- Berbegal, M., Ramón‐Albalat, A., León, M., and Armengol, J. (2020). Evaluation of long‐term protection from nursery to vineyard provided by Trichoderma atroviride SC1 against fungal grapevine trunk pathogens. Pest Management Science, 76(3): 967–977.
- Pollard-Flamand, J., Boulé, J., Hart, M., and Úrbez-Torres, J.R. (2022). Biocontrol activity of Trichoderma species isolated from grapevines in British Columbia against Botryosphaeria dieback fungal pathogens. Journal of Fungi, 8(4): 409.
- Bustamante, M.I., Elfar, K., and Eskalen, A. (2022). Evaluation of the antifungal activity of endophytic and rhizospheric bacteria against grapevine trunk pathogens. Microorganisms, 10(10): 2035.
- Langa-Lomba, N., González-García, V., Venturini-Crespo, M.E., Casanova-Gascón, J., Barriuso-Vargas, J.J., and Martín-Ramos, P. (2023). Comparison of the efficacy of Trichoderma and Bacillus strains and commercial biocontrol products against grapevine Botryosphaeria dieback pathogens. Agronomy, 13(2) 533.
- Salt, G.A. (1979). The increasing interest in minor pathogens. In: Schippers, B. and Gams, W. (Eds.) Soil borne plant pathogens.Academic Press, New York, p. 289-312
- Fravel, D.R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43: 337-359.
- Ayres, M.R.; Wicks, T.J.; Scott, E.S.; Sosnowski, M.R. (2017). Developing pruning wound protection strategies for managing Eutypa dieback. Aust. J. Grape Wine Res., 23, 103–111.
- Philips, A. J. L. (1998). Botryosphaeria dothidea and other fungi associated with Excoriose and dieback of grapevines in Portugal. J. Phytopathol. 146, 327-332.
- Dennis and Webster, (1971). C.E. Dennis, J. Webster. Antagonistic properties of species groups of Trichoderma Hyphal interactions Transa. Br. Mycol. Soc., 57 (1971), pp. 359-363
- Zhang, B.; Xu, L.; Ding, J.; Wang, M.; Ge, R.; Zhao, H.; Zhang, B.; Fan, J. (2022). Natural antimicrobial lipopeptides secreted by Bacillus spp. and their application in food preservation, a critical review. Trends Food Sci. Technol.,127, 26–37.
- Frighetto, R.T.S., Melo, I.S., (1995). Produção de antibióticos por microrganismos. In: Melo, I.S., De; Sanhueza, R.M.V., (Coord.), Métodos de seleção de microrganismos antagônicos a fitopatógenos. Jaguariúna: EMBRAPA-CNPMA; 1995. p. 40–46. Manual Técnico.
- Harrington, T. C., Steimel, J., & Kile, G. (2000). Genetic variation in Phaeoacremonium and Phaeomoniella species associated with grapevines. Mycologia, 92(5), 768–785.
- Agrios, G. N. (2005). Plant Pathology (5th ed.). Academic Press.
- Bruno, G., & Sparapano, L. (2006). Effects of three esca-associated fungi on Vitis vinifera L.: Vascular interactions and biochemical alterations. Plant Pathology, 55(3), 418–425.
- Peil S, Beckers SJ, Fischer J, Wurm FR. (2020). Biodegradable, lignin-based encapsulation enables delivery of Trichoderma reesei with programmed enzymatic release against grapevine trunk diseases. Mater Today Bio. 2020 Jun 20;7:100061.
- Altomare, C.; Norvell, W.A.; Bjbrkman, T. and Harman, G.E. (1999). Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl. Environ. Microbiol. 65, 2926–2933.
- Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma International Microbiology, 7(4), 249-260.
- Kucuk, C. and Kivanc, M. (2008). Mycoparasitism in the biological control of gibberella zeae and Aspergillus ustus by Trichoderma harzianum Journal of Agricultural Technology 4 49-55.
- Mukherjee, P. K., Horwitz, B. A., Herrera-Estrella, A., Schmoll, M., & Kenerley, C. M. (2013). Trichoderma research in the genome era. Annual Review of Phytopathology, 51, 105-129.
- Schuster, A., & Schmoll, M. (2010). Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 87(3), 787-799.
- Lastochkina, O., Pusenkova, L., Garshina, D., Yuldashev, R., Shpirnaya, I., Kasnak, C., & Aliniaeifard, S. (2020). The effect of endophytic bacteria Bacillus subtilis and salicylic acid on some resistance and quality traits of stored Solanum tuberosum tubers infected with Fusarium dry rot. Plants 9 (6): 738.
- Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of plant diseases. Environmental Microbiology, 13(4), 989-1001.
- Zhang, Y., Zhang, X., Chen, C., Zhou, M. G., & Wang, H. C. (2008). Antagonistic effects of Clonostachys rosea against Fusarium graminearum and its potential application in controlling Fusarium head blight of wheat. Biocontrol Science and Technology, 18(5), 559-571.
- Sun, X., Sun, Z., Zhang, H., & He, Y. (2021). Biocontrol efficacy and mechanism of Clonostachys rosea against Botrytis cinerea in postharvest strawberries. Postharvest Biology and Technology, 177, 111525.
- Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71(9), 4951-4959.
- Parafati, L., Vitale, A., Restuccia, C., & Cirvilleri, G. (2015). Biocontrol ability and action mechanism of food-isolated yeast strains against Penicillium expansum and Botrytis cinerea causing postharvest diseases on fruit. International Journal of Food Microbiology, 215, 7-15.
- Spadaro, D., & Droby, S. (2016). Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, 47, 39-49.
- Ait-Lahsen, H., Soler, A., Rey, M., de la Cruz, J., Monte, E., & Llobell, A. (2001). An antifungal exo-α-1, 3-glucanase (AGN13. 1) from the biocontrol fungus Trichoderma harzianum. Applied and Environmental Microbiology, 67(12), 5833-5839.
- Sicuia, O.A.; Constantinscu, F.; Cornea, C.P. ( 2015). Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom. Biotechnol. Lett. 20, 10737–10750.
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. ( 2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis Front. Microbiol.10, 302.
- Proca, I.; Diguta, F.C.; Cornea, C.P.; Jurcoane, S.; Matei, F. Halotolerant (2020). Bacillus amyloliquefaciens 24.5 useful as a biological agent to control phyto-pathogenic fungi. Rom. Biotechnol. Lett., 25, 1744–1753.
- Ganeshan, G., & Manoj Kumar, A. (2005). Pseudomonas fluorescens, a potential bacterial antagonist to control plant diseases. Journal of plant interactions, 1(3), 123-134.
- Lopes, M. R., Klein, M. N., Ferraz, L. P., da Silva, A. C., & Kupper, K. C. (2015). Saccharomyces cerevisiae: a novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiological research, 175, 93-99.
- Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43–56.
- Lorito, M., Woo, S. L., Harman, G. E., & Monte, E. (2010). Translational research on Trichoderma: From 'omics to the field. Annual Review of Phytopathology, 48, 395–417.
- Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16(3), 115–125.
- Luo, C., Liu, X., Zhou, H., Wang, X., & Chen, Z. (2015). Biological control of fungal pathogens by Bacillus subtilis isolates from natural environments depends on lipopeptide production. BioControl, 60, 773–783.
- Macwana, S. J., & Muriana, P. M. (2012). Antimicrobial activity of commercial and wild strains of Saccharomyces cerevisiae against foodborne bacterial pathogens. Journal of Food Protection, 75(6), 1047–1054.
- Fleet, G. H. (2007). Yeasts in foods and beverages: Impact on product quality and safety. Current Opinion in Biotechnology, 18(2), 170–175.
- Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52(suppl_1), 487–511.
- Pertot, I., Pintore, I., Giovannini, O., et al. (2017). Integrating biocontrol agents in fruit and vegetable disease management strategies. In G. Thakur & M. Sohal (Eds.), Microbial inoculants in sustainable agricultural productivity (Vol. 2, pp. 285–311). Springer.
- Samaras, A., Karaoglanidis, G., & Lagopodi, A. (2021). Clonostachys rosea as a biocontrol agent against plant pathogenic fungi. Biological Control, 157, 104587.
- Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Woo, S. L., Nigro, M., Marra, R., ... & Lorito, M. (2014). Trichoderma secondary metabolites active on plants and fungal pathogens. The Open Mycology Journal, 8(1).
- Kullnig-Gradinger, C. M., Seidl, V., & Fritsch, P. (2021). Antifungal metabolites of Trichoderma harzianum and their ecological significance. Microorganisms, 9(9), 1914.