Authors
1
University of Anbar
2
Department of Horticulture and Landscape Gardening, College of Agriculture, University of Anbar, Anbar, Iraq
3
Department of Soil & Water Resources, College of Agriculture, University of Anbar, Anbar, Iraq
4
Department of Horticulture and Landscape Gardening, College of Agriculture, University of Anbar, Anbar, IRAQ
5
Department of Horticulture and Landscape Design, College of Agriculture, University of Kirkuk, Kirkuk, IRAQ
6
Department of Plant Production (Horticulture – Pomology), Faculty of Agriculture, Saba Basha, University of Alexandria, Alexandria, EGYPT.
,
Document Type : Review Paper
Abstract
Water stress is a global problem with wide-ranging economic and social repercussions. Its roots bear an unbalanced conflict between supply and demand, as the demand for water rises in all sectors, the amount of good quality water that is easily accessible and low cost decreases, and this decline is rapid, especially in the Middle East and North Africa, which is the driest region in the world. With regard to the impact of plants on the amount of water available, there are three levels of water stress, namely mild stress, in which the water potential of the cells decreases by a very small amount of units of water potential (MPa), followed by moderate stress, in which the water potential of the cells drops to the range (-1.2 to -1.5 MPa), severe stress represents the highest level of stress, in which the water potential of the cells decreases by less than (-1.5 MPa). The vulnerability of plants to drought conditions depends on which of the above three levels the plant is exposed to during the growth and production stages.Water stress is a global problem with wide-ranging economic and social repercussions. Its roots bear an unbalanced conflict between supply and demand, as the demand for water rises in all sectors, the amount of good quality water that is easily accessible and low cost decreases, and this decline is rapid, especially in the Middle East and North Africa, which is the driest region in the world. With regard to the impact of plants on the amount of water available, there are three levels of water stress, namely mild stress.
- Pandey, P.; Irulappan, V.; Bagavathiannan, M. V. & Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Frontiers in Plant Science, 8, 537.
- Suzuki, N.; Rivero, R. M.; Shulaev, V.; Blumwald, E. & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytol., 203, 32–43.
- Al-Janabi, A. M. I.; Al-Dulaimy, A. F. Z.; Sekhi, Y. S.; Almohammedi, O. H. M. & Al-Taey, D. K. A. (2024). Effect of salt stress on growth and yield of plants: A review. IOP Conference Series: Earth and Environmental Science, 1371, 042028.
- Sun, Y.; Wang, C.; Chen, H. Y. H. & Ruan, H. (2020). Response of plants to water stress: A meta-analysis. Frontiers in Plant Science, 11, 978.
- Zia, R.; Nawaz, M. S.; Siddique, M. J.; Hakim, S. & Imran, A. (2021). Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiological Research, 242, Article 126626.
- Haghpanah, M.; Hashemipetroudi, S.; Arzani, A. & Araniti, F. (2024). Drought tolerance in plants: Physiological and molecular responses. Plants, 13(21), 2962.
- Pan, J.; Sharif, R.; Xu, X. & Chen, X. (2021). Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Frontiers in Plant Science, 11, 627331.
- Chen, S.; Ten Tusscher, K. H. W. J.; Sasidharan, R.; Dekker, S. C. & de Boer, H. J. (2023). Parallels between drought and flooding: An integrated framework for plant eco-physiological responses to water stress. Plant-Environment Interactions, 4(4), 175–187.
- Hasanuzzaman, M.; Nahar, K.; Gill, S. S. & Fujita, M. (2014). Drought stress responses in plants, oxidative stress, and antioxidant defense. In N. Tuteja & S. S. Gill (Eds.), Climate change and plant abiotic stress tolerance (pp. 209–250). Wiley-VCH, Weinheim, Germany.
- Farooq, M. Wahid, A.; Kobayashi, N.; Fujita, D. & Basra, S. M. A. 2009. Plant drought stress: effects, mechanisms and management. Springer Verlag/EDP Sciences/INRA., 29 (1), 185-212.
- Bewley, J. D., Bradford, K. J., Hilhorst, H. W. M. & Nonogaki, H. (2013) Seeds: Physiology of Development, Germination and Dormancy. 3rd Edition, Springer, New York.
- Nonogaki, H.; Bassel, G. W. & Bewley, J. D. (2010) Germination: Still a Mystery. Plant Science, 179, 574-581.
- Finch-Savage, W. E. & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501–523.
- Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Haleem Abdul-Wajid, H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
- Zhao, Y., Sun, T., Liu, J., Zhang, R., Yu, Y., Zhou, G., Liu, J., & Gao, B. (2024). The key role of plant hormone signaling transduction and flavonoid biosynthesis pathways in the response of Chinese pine (Pinus tabuliformis) to feeding stimulation by pine caterpillar (Dendrolimus tabulaeformis). International Journal of Molecular Sciences, 25(12), 6354.
- Reed, R. C., Bradford, K. J., & Khanday, I. (2022). Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity, 128, 450–459.
- Jagodzik, P.; Tajdel-Zielinska, M.; Ciesla, A.; Marczak, M. & Ludwikow, A. (2018). Mitogen-activated protein kinase cascades in plant hormone signaling. Frontiers in Plant Science, 9, 1387.
- Hoseini, M., & Arzani, A. (2023). Epigenetic adaptation to drought and salinity in crop plants. Journal of Plant Molecular Breeding, 11, 1–16..
- Naikwade, P. V. (2023). Plant responses to drought stress: Morphological, physiological, molecular approaches, and drought resistance. In Plant metabolites under environmental stress (1st, pp. 35). Apple Academic Press.
- Shukla, S.; Zhao, C. & Shukla, D. (2019). Dewetting controls plant hormone perception and initiation of drought resistance signaling. Structure, 27(4), 692–702.
- Chen, K.; Li, G. J.; Bressan, R. A.; Song, C.P.; Zhu, J.K. & Zhao, Y. (2020). Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 62(1), 25–54.
- Skirycz, A. & Inzé, D. (2013). The agony of choice: How plants balance growth and survival under water-limiting conditions. Plant Physiology, 162(4), 1768–1779.
- Liang, G., Liu, J., Zhang, J., & Guo, J. (2020). Effects of drought stress on photosynthetic and physiological parameters of tomato. Journal of the American Society for Horticultural Science, 145, 12–17.
- Hu, C., Elias, E., Nawrocki, W. J., & Croce, R. (2023). Drought affects both photosystems in Arabidopsis thaliana. New Phytologist, 240, 663–675.
- Nhamo, L.; Mpandeli, S.; Chimonyo, V. & Mabhaudhi, T. (2025). Summary: Crop water productivity: A catalyst for food and water security. In Enhancing water and food security through improved agricultural water productivity (Chapter 17). Springer.
- Kouighat, M., Kettani, R., El Fechtali, M., & Nabloussi, A. (2024). Exploring mechanisms of drought-tolerance and adaptation of selected sesame mutant lines. Journal of Agricultural and Food Research, 15, 100911.
- Morsy, A. R.; Mohamed, A. M.; Abo-Marzoka, E. A. & Megahed, M. A. H. (2018). Effect of water deficit on growth, yield and quality of soybean seed. Journal of Plant Production, Mansoura University, 9(8), 709–716.
- Lawson, T. & Vialet-Chabrand, S. (2019). Speedy stomata, photosynthesis and plant water use efficiency. New Phytologist, 221(1), 93–98.
- Munemasa, S. Hauser, F. Park, J. Waadt, R. Brandt, B. & Schroeder, J. I. (2015). Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 28, 154–162.
- Sussmilch, F. C.; Brodribb, T. J. & McAdam, S. A. M. (2017). Up-regulation of NCED3 and ABA biosynthesis occur within minutes of a decrease in leaf turgor but AHK1 is not required. Journal of Experimental Botany, 68(11), 2913–2918.
- Kaiser, E.; Morales, A.; Harbinson, J.; Kromdijk, J.; Heuvelink, E. & Marcelis, L. F. M. (2015). Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany, 66(9), 2415–2426.
- Kumar, M., Kesawat, M. S., Ali, A., Lee, S. C., Gill, S. S., & Kim, H. U. (2019). Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plants, 8(12), 592.
- Lumba, S., Toh, S., Handfield, L.F., Swan, M., Liu, R., Youn, J.Y., Cutler, S. R., Subramaniam, R., Provart, N., Moses, A., Desveaux, D., & McCourt, P. (2014). A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis. Volume 29(3), 360–372.
- dos Santos, T. B., Ribas, A. F., de Souza, S. G. H., Budzinski, I. G. F., & Domingues, D. S. (2022). Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses, 2(1), 113–135.
- Muhammad, I., Shalmani, A., Ali, M., Yang, Q.-H., Ahmad, H., & Li, F. B. (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science, 11, 615942.
- Arab, M. M., Askari, H., Aliniaeifard, S., Mokhtassi-Bidgoli, A., Estaji, A., Sadat-Hosseini, M., Sohrabi, S. S., Mesgaran, M. B., Leslie, C. A., Brown, P. J., & Vahdati, K. (2023). Natural variation in photosynthesis and water use efficiency of locally adapted Persian walnut populations under drought stress and recovery. Plant Physiology and Biochemistry, 201, 107859.
- Jiang, Z.; Piao, L.; Guo, D.; Zhu, H.; Wang, S.; Zhu, H.; Yang, Z.; Tao, Y.; Li, M. & Liu, C. (2021). Regulation of maize kernel carbohydrate metabolism by abscisic acid applied at the grain-filling stage at low soil water potential. Sustainability, 13(6), 3125.
- Nunes-Nesi, A.; Fernie, A. R. & Stitt, M. (2010). Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Molecular Plant, 3(6), 973–996.
- Tinte, M. M., Chele, K. H., van der Hooft, J. J. J., & Tugizimana, F. (2021). Metabolomics-guided elucidation of plant abiotic stress responses in the 4IR era: An overview. Metabolites, 11(7), 445.
- Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7, bio035279.
- Oguz, M. C.; Aycan, M.; Oguz, E.; Poyraz, I. & Yildiz, M. (2022). Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia, 2(4), 180–197.
- Filipović, A. (2020). Water plant and soil relation under stress situations. IntechOpen.
- Mulet, J. M.; Campos, F. & Yenush, L. (2020). Editorial: Ion homeostasis in plant stress and development. Frontiers in Plant Science, 11, 618273.
- Patriarca, E. J., Cermola, F., D’Aniello, C., Fico, A., Guardiola, O., De Cesare, D., & Minchiotti, G. (2021). The multifaceted roles of proline in cell behavior. Frontiers in Cell and Developmental Biology, 9, 735770.
- Jarin, A., Ghosh, U. K., Hossain, M. S., et al. (2024). Glycine betaine in plant responses and tolerance to abiotic stresses. Discover Agriculture, 2, 127.
- Shinozaki, K. & Yamaguchi-Shinozaki, K. (2022). Functional genomics in plant abiotic stress responses and tolerance: From gene discovery to complex regulatory networks and their application in breeding. Proceedings of the Japan Academy, Series B, Physical and Biological Sciences, 98(8), 470–492.
- Liao, Z.; Chen, B.; Boubakri, H.; Farooq, M.; Mur, L. A. J.; Urano, D.; Teo, C. H.; Tan, B. C.; Hasan, M. M.; Aslam, M. M.; Tahir, M. Y. & Fan, J. (2025). The regulatory role of phytohormones in plant drought tolerance. Planta, 261, 98.
- Margay, A. R.; Azhar, M. & Latief, B. (2024). Review on Hormonal Regulation of Drought Stress Response in Plants”. International Journal of Plant & Soil Science, 36 (8),902-916.
- Ma, L.; Liu, X.; Lv, W. & Yang, Y. (2022). Molecular mechanisms of plant responses to salt stress. Frontiers in Plant Science, 13, 934877.
- Kim, J. S.; Kidokoro, S.; Yamaguchi-Shinozaki, K. & Shinozaki, K. (2024). Regulatory networks in plant responses to drought and cold stress. Plant Physiology, 195(1), 170–189.
- Szepesi, Á. (2021). Plant Metabolites and Regulation under Environmental Stress. Plants (Basel), 10,102013.
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z. & Chen, S. (2021). Response Mechanism of Plants to Drought Stress. Horticulturae, 7(3), 50.
- Fang, Y. & Xiong, L. (2014). General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 72(4), 673–689.
- Moloi, S. J. & Ngara, R. (2023). The roles of plant proteases and protease inhibitors in drought response: a review. Frontiers in Plant Science, 14, 1165845.
- Prabhavathi, P. R.; Mal, A. & Bamel, K. (2022). Osmoprotectants: Protective role under various stresses in plants. International Journal of Botany Studies, 7(2), 108–113.
- Farooq, M.; Hussain, M.; Wahid, A. & Siddique, K. H. M. (2012). Drought stress in plants: An overview. (pp. 1–33). Springer.
- Tardieu, F.; Simonneau, T. & Muller, B. (2018). The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annual Review of Plant Biology, 69, 733–759.
- Li, X., Gao, B., Wood, A. J., Buitink, J., Zhang, D., & Oliver, M. J. (2023). Editorial: Desiccation tolerance in land plants: from mechanisms to evolution. Frontiers in Plant Science, 14.
- Gao, L. Kantar, M. B. Moxley, D. Ortiz-Barrientos, D. & Rieseberg, L. H. (2023). Crop adaptation to climate change: An evolutionary perspective. Molecular Plant, 16(10), 1518–1546.
- Foyer, C. H. & Kranner, I. (2023). Plant adaptation to climate change. Biochemical Journal, 480(22), 1865–1869.
- Rellán-Álvarez, R. Lobet, G. & Dinneny, J. R. (2016). Environmental control of root system biology. Annual Review of Plant Biology, 67, 619–642.
- Yu, L., Gao, X., & Zhao, X. (2020). Global synthesis of the impact of droughts on crops’ water-use efficiency (WUE): Towards both high WUE and productivity. Agricultural Systems, 177, 102723.
- Cushman, J. C.; Denby, K. & Mittler, R. (2022). Plant responses and adaptations to a changing climate. The Plant Journal, 109(2), 319–322.
- Pérez-López, A. V.; Lim, S. D. & Cushman, J. C. (2023). Tissue succulence in plants: Carrying water for climate change. Journal of Plant Physiology, 289, 154081.
- Sanusi, B., Inyass, A. Z., Zubaidatu, S., & others. (2025). Effect of drought stress on some morphological, physiological and biochemical parameters in soybean (TGX-1835-10E) variety. Discover Plants, 2, 164.
- Amin, A. B.; Rathnayake, K. N.; Yim, W. C.; Garcia, T. M.; Wone, B.; Cushman, J. C. & Wone, B. W. M. (2019). Crassulacean acid metabolism abiotic stress-responsive transcription factors: A potential genetic engineering approach for improving crop tolerance to abiotic stress. Frontiers in Plant Science, 10, 129.
- Huang, S. & Jin, S. (2025). Enhancing drought tolerance in horticultural plants through plant hormones: A strategic coping mechanism. Frontiers in Plant Science, 15,368.
- Khan, A. A.; Wang, Y.-F. & Akbar, R. (2025). Mechanistic insights and future perspectives of drought stress management in staple crops. Frontiers in Plant Science, 16, Article 2025.
- Jain, L. K.; Verma, M. P.; Ram, N.; Choudhary, A. & Parewa, H. P. (2022). Seed hardening: A way to tolerate against abiotic stress in rainfed areas. International Journal of Economic Plants, 9(1), 18–21.
- Wahab, A., Abdi, G., Saleem, M. H., Ali, B., Ullah, S., Shah, W., Mumtaz, S., Yasin, G., Muresan, C. C., & Marc, R. A. (2022). Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants (Basel), 11(13), 1620.
- Patil, B. C.; Pawar, K. N. & Babu, A. G. (2014). Studies on induction of drought tolerance by seed hardening in Bt cotton. Plant Archives, 14(1), 357–362.
- Shah, T.; Khan, A. Z.; Rehman, A. U.; Akbar, H.; Muhammad, A. & Khalil, S. K. (2017). Influence of pre-sowing seed treatments on germination properties and seedling vigor of wheat. Research in Agricultural & Veterinary Sciences, 1(1), 62–70.
- Toscano, S.; Franzoni, G. & Álvarez, S. (2023). Drought stress in horticultural plants. Horticulturae, 9(1), 7.
- Vogt, G. (2022). Environmental adaptation of genetically uniform organisms with the help of epigenetic mechanisms-An insightful perspective on ecoepigenetics. Epigenomes, 7(1), 10-23.
- Bustos-Korts, D.; Romagosa, I.; Borràs-Gelonch, G. & van Eeuwijk, F. (2019). Genotype by environment interaction and adaptation. In Crop Science (pp. 199–220). Springer.
- Xu, J.; Liu, H.; Zhou, C.; Wang, J.; Wang, J.; Han, Y.; Zheng, N.; Zhang, M. & Li, X. (2024). The ubiquitin-proteasome system in the plant response to abiotic stress: Potential role in crop resilience improvement. Plant Science, 342, 112035.
- Melo, F. V.; Oliveira, M. M.; Saibo, N. J. M. & Lourenço, T. F. (2021). Modulation of abiotic stress responses in rice by E3-ubiquitin ligases: A promising way to develop stress-tolerant crops. Frontiers in Plant Science, 12, 640193.
- Chen, X.; Wang, T.; Rehman, A. U.; Wang, Y.; Qi, J.; Li, Z.; Song, C.; Wang, B.; Yang, S. & Gong, Z. (2021). Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7. Journal of Integrative Plant Biology, 63(3), 494–509.
- Doroodian, P., & Hua, Z. (2021). The ubiquitin switch in plant stress response. Plants (Basel), 10(2), 246. https://doi.org/10.3390/plants10020246.
- Stone, S. L. (2014). The role of ubiquitin and the 26S proteasome in plant abiotic stress signaling. Frontiers in Plant Science, 5, 135.
- Tang, J. & Bassham, D. C. (2021). Autophagy during drought: Function, regulation, and potential application. The Plant Journal, 109(2), 390–401.
- Movahedi, A.; Dzinyela, R.; Aghaei-Dargiri, S.; Alhassan, A. R.; Yang, L. & Xu, C. (2023). Advanced study of drought-responsive protein pathways in plants. Agronomy, 13(3), 849.
- Meng, Y.; Lv, Q.; Li, L.; Wang, B.; Chen, L.; Yang, W.; Lei, Y.; Xie, Y. & Li, X. (2023). E3 ubiquitin ligase TaSDIR1‐4A activates membrane‐bound transcription factor TaWRKY29 to positively regulate drought resistance. Plant Biotechnology Journal, 22(4), 987–1000.