• Register
  • Login

Kirkuk University Journal for Agricultural Sciences (KUJAS)

  1. Home
  2. Using AMMI Analysis to Select the Most Stable and Productive Varieties in Plant Breeding Programs. Review Article

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

Related Links

About Journal

FAQ

News

Journal Metrics

Using AMMI Analysis to Select the Most Stable and Productive Varieties in Plant Breeding Programs. Review Article

    Authors

    • Yaseen Obaid Noori Ahmed Sharif 1
    • Muhamed Auda Kalaf AL-Abody 2
    • Tariq Raad Thaer Al-Mafarji 3
    • Zakaria Al-Ajlouni 4

    1 Department of Field Crops, College of Agriculture, Kirkuk University, Kirkuk, Iraq.

    2 Department of Field Crops, College of Agriculture, University of Basrah, Iraq.

    3 Department of Medicinal and Industrial Plants, College of Medicinal and Industrial Plants, University Kirkuk, Kirkuk, Iraq.

    4 Department of Plant Production, College of Agriculture, University of Science and Technology, Jordan.

,

Document Type : Review Paper

10.58928/ku25.16425
  • Article Information
  • References
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

The genetic stability of genotypes under fluctuating environmental conditions is one of the most important elements in plant breeding programs. These factors enable breeders to make decisions regarding the adaptability of different genotypes to various environments. However, reactions of different genotypes to extreme environmental factors such as water stress, high temperatures, salinity, and other stresses complicate the choice of superior genotypes. So, analysis of genetic stability (in particular, the AMMI model) and estimation of GEI could be one of the most important criteria that plant breeders should take into consideration. In this regard, plant breeders use various statistical tools and methods for the detection of stable and high-yielding genotypes across environments. Of the many tools available, AMMI Biplot is one such important and effective methodology. This method is capable of showing those genotypes which combine genetic stability with productivity in various environments. Such genotypes are considered stable due to their superior genetic makeup and resilience to changeable environmental conditions. The AMMI-Biplot technique has been very efficient in the analysis of GEI and in the identification of superior genotypes. In the plant varieties, genetic stability is thought of as a multivariate character that is a consequence of the interaction of thousands of gene pairs with various environmental factors, therefore causing wide variations in the phenotypic expression of the characters. Genetically stable genotypes possess a high level of adaptability to diverse approved environments. The importance of this interaction in agriculture rests on the fact that testing of varieties in more than one environment is a pre-requisite for its approval, as well as for selecting a suitable environment and the development of genetically stable varieties resistant to environmental fluctuations.

Keywords

  • AMMI Analysis
  • Varieties
  • Yield Stability
  • Biplot Analysis
  • Multi-Environment Trials
  • Plant Breeding Programs

Main Subjects

  • Field Crops
  • XML
  • PDF 396.66 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
References
  • Aljumaily, J. M. A. (2014). Analysis of genotype by environment interaction data using AMMI Biplot. The Iraqi Journal of Agricultural Sciences, 45 (2), 125–132.
  • Comstock R. E. and R. H. Moll .1963. Genotype-Environment interaction. in Hanson W. D and H.E Robinson (ets.) Statistical genetics and plant breeding Nat. Acad Sci. Nat Res. council Publ Washington. P164-196.
  • Jabbar, L. J., and Mohammed, M. I. (2022). Genetic variations, correlations, and path analysis of flax (Linum usitatissimum L.) genotypes at different concentrations of NPK nano complex fertilizer. Kirkuk University, College of Agriculture, Iraq, 13 (4), 364–381.
  • Al-Abody, M. A. K., Al-Sabahi, W. A. J., and AL-Abdullah, S. A. M. (2020). Study of genetic and phenotype correlations and heritability for twelve varieties of wheat (Triticum aestivum L.) planting under different environmental of Basrah. Al-Muthanna Journal of Agricultural Sciences, 8(1):8-20.
  • Lin, C. S.; M. R. Binns and L. P. Lefkovitch. (1986). Stability analysis where do we stand. Crop Sci. 26: 894-899.
  • Al-Samarrai, R., & Hindi, H. (2024). Stability Evaluation of Barley Genotypes grown in gypsum soil for Environmental variations. Journal of Medicinal and Industrial Plant Sciences, 2(2), 15-25. https://doi.org/10.32894/MEDIP.24.2.2
  • Mosa, N. A., Ali, A. M., and Zibari, P. A. A. (2024). Assessment of genetic stability of Magnolia grandiflora L. by AFLP marker via tissue culture technology. Kirkuk University Journal for Agricultural Sciences,15 (4):38-45.
  • Al-Subhi, W. A., Ali, H. A., and Al-Asady, K. K. (2004). Yield stability in some varieties of sorghum under Basrah condition Sorghum bicolor, L. (Moench). Basrah J. Agric. Sci. 17(1):209 -216.
  • Badu-Apraku, B., Fakorede, М. А. В., Menkir, A., Kamara, A. Y., and Dapaah, S. (2003). A multivariate analysis of the stability of extra-early maize inbred lines in Striga-infested environments. Maydica, 48 (4), 229-237.
  • Sharif, Y. O. N. A., Madab, D. S., & Hindi, H. A. (2024). Estimation of Path Analysis and Genetic Parameters for Sorghum (Sorghum bicolor (L.) Moench) Varieties in Different Environments. IOP Conference Series: Earth and Environmental Science, 1371(5). https://doi.org/10.1088/1755-1315/1371/5/052035
  • Al-Sahooki, M. M. (2000). Production and improvement of peanuts. Iraqi Journal of Agricultural Sciences, 31 (1), 9.
  • Al-Mafarji, T. R. T., and Al-Jubouri, J. M. A. (2023). Heterosis, correlations and path analysis of grain yield components in bread wheat (Triticum aestivum L.). Kirkuk University Journal for Agricultural Sciences, 14 (3), 34–46
  • Al-Abody, M. A. K., Al-Sabahi, W. A., and Al-Abdullah, S. A. M. (2019). Analysis of genetic stability using GGE-biplot technic to wheat cultivars (Triticum aestivum L.) under Basrah different environmental conditions. Plant Archives, 19 (2), 3597–3604.
  • Omar, A., & Al-Layla, M. (2024). Estimation genetic parameter, genotypic and phonotypic correlation, path and cluster analysis of quantitative traits for Bread Wheat genotypes in Erbil under rain- fed condition. Journal of Medicinal and Industrial Plant Sciences, 2(3), 23-34. https://doi.org/10.32894/MEDIP.24.3.4
  • Al-Abody, M. Α. Κ. (2015). Response of Bread Wheat (Triticum aestivum L.) to Foliar Application of Iron and Manganese and their Interaction in Yield and Yield Components. Basrah Journal of Agricultural Sciences, 28 (2), 87-97.
  • Al-Mafarji, T. R. T., Al-Jubouri, J. M. A., & Kanbar, A. (2024). Estimate Combining Ability and Gene Action of Yield, and Some Qualitative Traits of Bread Wheat Genotypes. (Triticum aestivum L.) of Half-Diallel Crosses. Tikrit Journal for Agricultural Sciences, 24(3), 182–196. https://doi.org/10.25130/tjas.24.3.15
  • Al-Jubouri, R. M. A., Mohammed, M. I., & Al-Mafarji, T. R. T. (2024). Genetic Analysis of Heterosis and some Genetic Parameters of Half Diallel Crosses in Maize (Zea mays L.). IOP Conference Series: Earth and Environmental Science, 1371(5). https://doi.org/10.1088/1755-1315/1371/5/052027
  • Al-Mafarji, T. R. T., & Al-Jubouri, J. M. A. (2023). Combining Ability and Gene Action of Half Diallel Crosses in Bread Wheat (Triticum aestivum L.). IOP Conference Series: Earth and Environmental Science, 1262(5). https://doi.org/10.1088/1755-1315/1262/5/052027
  • Crossa, J. (1990). Statistical analysis of multi-locations trials. Advan. 44: 55-85.
  • Mohammadi, R., M. Armion, A. Shabani and A. Daryaei. (2007). Identification of stability and adaptability in advanced durum wheat genotypes using AMMI analysis. Asian J. Plant Sci. 6: 1261-1268.
  • Nassar, R., and M. Huehn. (1987). Studies on estimation of phenotypic stability: Tests of significance for non-parametric measures of phenotypic stability. Biometric 43: 45-53.
  • Purchase, J. L., Hatting, H., & Van Deventer, C. S. (2000). Genotype× environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17(3), 101-107.‏ https://doi.org/10.1080/02571862.2000.10634878
  • Mitrović, B., Stanisavljević, D., Treski, S., Stojaković, M., Ivanović, M., Bekavac, G., and Rajković, M. (2012). Evaluation of experimental maize hybrids tested in multi-location trials using AMMI and GGE biplot analyses. *Turkish Journal of Field Crops, 17 (1), 35–40.
  • Naroui Rad, M.R., Abdul Kadir, M., Rafii, M.Y., Jaafar, H.Z.E., Naghavi, M.R., and Ahmadi, F. (2013). Genotype × environment interaction by AMMI and GGE biplot analysis in three consecutive generations of wheat (Triticum aestivum) under normal and drought stress conditions. Australian Journal of Crop Science, 7(7), 956–961.
  • Al-Rawi, O. H., Elsahookie, M. M., and Al-Jumaily, A. M. A. (2013). Stability estimates of some maize crosses by GR and AMMI equations. The Iraqi Journal of Agricultural Sciences, 44 (4), 427–433.
  • Hagos, H. G., and Abay, F. (2013). AMMI and GGE biplot analysis of bread wheat genotypes in the northern part of Ethiopia. Journal of Plant Breeding and Genetics, 01, 12–18.
  • Daemo, B. B., & Ashango, Z. (2024). Application of AMMI and GGE biplot for genotype by environment interaction and yield stability analysis in potato genotypes grown in Dawuro zone, Ethiopia. Journal of Agriculture and Food Research, 18, 101287.‏
  • Mortazavian, S. M. M., Nikkhah, H. R., Hassani, F. A., Sharif-al-Hosseini, M., Taheri, M., and Mahlooji, M. (2014). GGE Biplot and AMMI Analysis of Yield Performance of Barley Genotypes across Different Environments in Iran. Journal of Agricultural Science and Technology (JAST), 16 (3), 609-622.
  • Kadhem, F. A., and Baktash, F. Y. (2016). AMMI analysis of adaptability and yield stability of promising lines of bread wheat (Triticum aestivum L.). The Iraqi Journal of Agricultural Sciences, 47 (Special Issue), 35–43.
  • Alam, A.; Farhad; A. Hakim; N. C. D. Barma; P. K. Malaker; M. A. Reza; A. Hossain and M. li. (2017). AMMI and GGE BIPLOT Analysis for Yield Stability of Promising Bread Wheat Genotypes in Bangladesh. Pak. J. Bot., 49(3): 1049-1056
  • Safavi, S. M., and Bahraminejad, S. (2017). The evaluation of genotype × environment interactions for grain yield of oat genotypes using AMMI model. Journal of Crop Breeding, 9 (22), 125–132.
  • Tekdal, S., and Kendal, E. (2018). Stability Parameters for Grain Yield of Emmer Wheat (Triticum dicoccum Schrank) Genotypes Turkish Journal of Field Crops, 23(2), 124-132.
  • Ali, M., Elsadek, A., and Salem, E.M. (2018). Stability Parameters and AMMI Analysis of Quinoa (Chenopodium quinoa Willd.). Egyptian Journal of Agronomy, 40(1), 59–74.
  • Enyew, M., Feyissa, T., Geleta, M., Tesfaye, K., Hammenhag, C., and Carlsson, A. S. (2021). Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). PLOS ONE, 16 (10), e0258211.
  • Erdemci, I. (2018). Investigation of genotype × environment interaction in chickpea genotypes using AMMI and GGE biplot analysis. Turkish Journal of Field Crops, 23 (1), 20–26.
  • Bocianowski, J., Warzecha, T., Nowosad, K., and Bathelt, R. (2019). Genotype by environment interaction using AMMI model and estimation of additive and epistasis gene effects for 1000-kernel weight in spring barley (Hordeum vulgare L.). Journal of Applied Genetics, 60 (1), 127–135.
  • Khan, M. M. H., Rafii, M. Y., Ramlee, S. I., Jusoh, M., and Mamun, M. A. (2021). AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (Vigna subterranea L. Verdc.) genotypes under the multi-environmental trials (METs Scientific Reports, 11(1), 22791
  • Farayedi, Y., Abdi, H., Ahakpaz, F., Kanouni, H., and Mahmoodi, A. A. (2021). Genotype and environment interaction analysis for grain yield of chickpea genotypes using AMMI and GGE biplot models. Iranian Journal of Field Crop Science, 52(1), 155-166 .
  • Cardona–Ayala, C. E., Aramendiz-Tatis, H., and Espitia-Camacho, M. (2021). AMMI and SREG analysis for protein content in Vigna unguiculata (L.) Walp. Revista Ciência Agronômica, 52(4), e20207650.
  • Jedzura, S., Bocianowski, J., and Matysik, P. (2022). The AMMI model application to analyze the genotype–environmental interaction of spring wheat grain yield for the breeding program purposes. Cereal Research Communications, 50(4), 1213–1224.
  • Oroian, C., Ugrujan, F., Muresan, I.C., Oroian, I., Odagiu, A., Petrescu-Mag, I.V., and Burduhos, P. (2023). AMMI Analysis of Genotype × Environment Interaction on Sugar Beet (Beta vulgaris L.) Yield, Sugar Content and Production in Romania. Agronomy, 13 (10), 2549.
  • Navrood, F. F., Zakaria, R. A., Rad, M. M., Zare, N., and Ahrabi, M. M. (2023). Stability analysis of groundnut (Arachis hypogaea L.) genotypes using AMMI and GGE biplot models and ideal genotype selection indicator. Indian Journal of Genetics and Plant Breeding, 83 (4), 518–525.
  • Chaudhary, E., Sharma, S., Gautam, P., Ghimire, S., Sapkota, S., Bhattarai, K., Roka, P., Poudel, R., Timalsina, B., Neupane, K., G.C., G., Pariyar, M., Aryal, A., Poudel, M. R., and Bhandari, R. (2023). AMMI and GGE biplot analysis of wheat genotypes under heat stress and heat drought environment. Archives of Agriculture and Environmental Science, 8 (4), 484–489.
  • Wodebo, K. Y., Tolemariam, T., Demeke, S., Garedew, W., Tesfaye, T., Zeleke, M., Gemiyu, D., Bedeke, W., Wamatu, J., and Sharma, M. (2023). AMMI and GGE Biplot Analyses for Mega-Environment Identification and Selection of Some High-Yielding Oat (Avena sativa L.) Genotypes for Multiple.
  • Demelash, H. (2024). Genotype by environment interaction, AMMI, GGE biplot, and mega environment analysis of elite Sorghum bicolor (L.) Moench genotypes in humid lowland areas of Ethiopia. Heliyon, 10, e26528
  • Mullualem, D., Tsega, A., Mengie, T., Fentie, D., Kassa, Z., Fassil, A., Wondaferew, D., Gelaw, T. A., and Astatkie, T. (2024). Genotype-by-environment interaction and stability analysis of grain yield of bread wheat (Triticum aestivum L.) genotypes using AMMI and GGE biplot analyses. Heliyon, 10, e32918.
  • Rahmati, S., Azizi-Nezhad, R., Pour-Aboughadareh, A., Etminan, A., and Shooshtari, L. (2024). Analysis of genotype-by-environment interaction effect in barley genotypes using AMMI and GGE biplot methods. Heliyon, 10, e38131.
  • Tiwari, D. N., Pandey, M. P., Manandhar, H. K., and Bhusal, T. N. (2024). Genotype by environment interaction using AMMI, GGE biplot and multivariate analysis of Nepalese aromatic rice landraces. Agronomy Journal of Nepal, 8 (1), 34–51
  • Dang, X., Hu, X., Ma, Y., Li, Y., Kan, W., and Dong, X. (2024). AMMI and GGE biplot analysis for genotype × environment interactions affecting the yield and quality characteristics of sugar beet. PeerJ, 12, e16882.
  • Alemayehu, L, Kebede M and Wada E. (2025). AMMI analysis of elite bread wheat (Triticum aestivum L.) selections for genotype by environment interaction and stability of grain yield in Southern Ethiopia. PLOS ONE 20(1): 1-27.

 

    • Article View: 66
    • PDF Download: 60
Kirkuk University Journal for Agricultural Sciences (KUJAS)
Volume 16, Issue 4 - Issue Serial Number 4
December 2025
Page 233-239
Files
  • XML
  • PDF 396.66 K
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
Statistics
  • Article View: 66
  • PDF Download: 60

APA

Sharif, Y., AL-Abody, M., Al-Mafarji, T., & Al-Ajlouni, Z. (2025). Using AMMI Analysis to Select the Most Stable and Productive Varieties in Plant Breeding Programs. Review Article. Kirkuk University Journal for Agricultural Sciences (KUJAS), 16(4), 233-239. doi: 10.58928/ku25.16425

MLA

Yaseen Obaid Noori Ahmed Sharif; Muhamed Auda Kalaf AL-Abody; Tariq Raad Thaer Al-Mafarji; Zakaria Al-Ajlouni. "Using AMMI Analysis to Select the Most Stable and Productive Varieties in Plant Breeding Programs. Review Article". Kirkuk University Journal for Agricultural Sciences (KUJAS), 16, 4, 2025, 233-239. doi: 10.58928/ku25.16425

HARVARD

Sharif, Y., AL-Abody, M., Al-Mafarji, T., Al-Ajlouni, Z. (2025). 'Using AMMI Analysis to Select the Most Stable and Productive Varieties in Plant Breeding Programs. Review Article', Kirkuk University Journal for Agricultural Sciences (KUJAS), 16(4), pp. 233-239. doi: 10.58928/ku25.16425

VANCOUVER

Sharif, Y., AL-Abody, M., Al-Mafarji, T., Al-Ajlouni, Z. Using AMMI Analysis to Select the Most Stable and Productive Varieties in Plant Breeding Programs. Review Article. Kirkuk University Journal for Agricultural Sciences (KUJAS), 2025; 16(4): 233-239. doi: 10.58928/ku25.16425

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Glossary
  • Sitemap

News

  • Kirkuk University Journal For Agricultural Sciences ... 2025-12-01
  • Kirkuk University Journal of Agricultural Sciences ... 2026-01-07

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com