• Register
  • Login

Kirkuk University Journal for Agricultural Sciences (KUJAS)

  1. Home
  2. The Role of Auxins in Interactive Relationships between Plants and Pathogens

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

Related Links

About Journal

FAQ

News

Journal Metrics

The Role of Auxins in Interactive Relationships between Plants and Pathogens

    Authors

    • Eman Khalil Abdul-karim
    • Halima Z Hussein

    Department of Plant Protection, College of Agricultural Engineering Sciences, University of Baghdad, Iraq,baghdad

,

Document Type : Review Paper

10.58928/ku24.15401
  • Article Information
  • References
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

This study aimed to elucidate the importance of plant hormones regulating plant growth, especially auxin (indoleacetic acid). The study showed that this hormone is produced by both plants and microorganisms such as bacteria and fungi through different metabolic pathways, yet they produce the same auxin . The amino acid tryptophan is a primary source in the biosynthesis of indoleacetic acid. Research has shown the role and effectiveness of auxin in plants, as well as its role in the interactions between plants and pathogens, and its effect on pathogens varies positively or negatively. It is important in the symbiotic relationships between root nodule bacteria and plants and mycorrhizae and plants that promote plant growth and increase its resistance to pathogens. Additionally, auxin influences the growth and pathogenicity of plant pathogenic fungi and increases the pathogenicity of fungal pathogens.Hormones are present in plant tissues, where more than one hormone may be found in a single tissue. Hormones are characterized by their action within the same cell or by their ability to move to another location and exert their effects there. They are naturally occurring, but when synthesized chemically, they are called growth regulators .
The effects of hormones differ; auxins and gibberellins, for example, promote stem elongation , but their mechanisms of action vary On the other hand, abscisic acid and ethylene inhibit stem growth, dividing them into two groups : growth promoters, which stimulate plant growth, such as auxins, gibberellins, and cytokinins .The second group consists of growth inhibitors represented by abscisic acid and ethylene .

Keywords

  • Indoleacetic acid
  • plant hormones
  • tryptophan
  • pathogens
  • Auxin

Main Subjects

  • Plant Protection
  • XML
  • PDF 529.32 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
References
  • Ateah,H.J.;M.K. S. Al_Deen  and B. A. Abraheem.2010. Effect of plant growth regulaturs on some vegetative characters of black seed.The Iraqi Journal of Agricultural Sciences. 41 (2):80-88  .
  • Soliman, N. A., S.M. Al-amin; A.E. Mesbah;A.M. Ibrahim & A.M.Mahmoud .2020. Pathogenicity of three entomopathogenic fungi against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann)(Diptera: Tephritidae). Egyptian Journal of Biological Pest Control, 2020. 30(1), 1-8.
  • Lestari , D. ; Asrul ; T. Kuswinanti; Y .Musa and Sulfahri .2021. Selection of fungi that potentially produces IAA (Indole Acetic Acid) hormone origin of Takalar sugar factory waste. IOP Conf. Series: Earth and Environmental Science 807 . 022039 . doi:10.1088/1755-1315/807/2/022039
  • Tarkowská, D.; O. Novák ; K. Floková ; P. Tarkowski ; V. Tureèková and J. Grúz, .2014 . Quo vadis plant hormone analysis?. Planta .240: 55–76. doi:10.1007/s00425-014-2063-9  .
  • Qadir,S.A. ; M. Q. Khursheed ; T. S. Rashid and K. Awla . 2019. Abscisic acid accumulation and physiological indices in responses to drought stress in wheat genotypes.   Iraqi Journal of Agricultural Sciences .50(2):705- 712.
  • Kaya C.A.L ; I.Tuna ; I. et yokas   .2009. The role of plant hormones in plants Under salinity stress. Salinity and water stress. Part of the tasks for vegetation science . 44:   (PP45-50). Purchase on springer. Com. The Role of Plant Hormones in Plants Under Salinity Stress | SpringerLink
  • Mustafa ,S.B.I.2017. The biological effectiveness of gibberellic acid seeds soaking and foliar to abscisic acid in the growth ,anise oil yield and its chemical content.  The Iraqi Journal of Agricultural Sciences .   48(5) :1364-1175.
  • Altotanje,A.R.K. and A. T. Joody.2019. Effect of nitrogen,root stimulator,and gibberellic acid on a specific characteristics of peachsaplings. Iraqi Journal of Agricultural Sciences .50(3):827- 834.
  • Osama .S. S. 2022. Micropropagation of grapevine (Vitis vinifera) cvs. Red globe and superior.  Iraqi Journal of Agricultural Sciences .53(4):833- 849.
  • Santner, A.; Calderon- Villalobos   and M. Estelle M.  2009 . Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology. 5.301-307. Plant hormones are versatile chemical regulators of plant growth | Nature Chemical Biology
  • Abdul-Karim, E. K. 2021 . The efficiency of magnesium oxide, nano magnesium oxide and cinnamon alcoholic extract in controlling Fusarium oxysporum sp. lycopersici which causes Fusarium wilt on tomato. International Journal of Agricultural and Statistical Sciences, 17, 1611-1618. https://connectjournals.com/03899.2021.17.1611
  • Mandal, S.M.; K.C. Mondal ; S. Dey  R. Pati   .2007 . Optimization of cultural and nutritional conditions for Indol-3- Acetic Acid (IAA) production by a Rhizobium sp. Isolated from root nodules of Vingamungo (L.) Hepper. Research Journal Microbiology. 2:239-246. https://dx.doi.org/10.17311/jm.2007.239.246
  • Ramadhani ,I. ; S. Prabaningtyas ; A. Wiltjoro    ; R. T. Saptawati  ; A. Rodiansyah .2020. Quantitative assay of Indole Acetic Acid-producing bacteria isolated from several lakes in East Java, Indonesia. B IOD I V E R S I T A S.21(11): 5448-5454. DOI: 10.13057/biodiv/d211153
  • Tiryaki , D. and Ö. Gülmez. 2021. Determination of the Effect of Indole Acetic Acid (IAA) Produced from Edible Mushrooms on Plant Growth and Development. Anatolian Journal of Biology. 2: 17-20. 2141646 (dergipark.org.tr)
  • Olanrewaju, O.S.; B.R. Glick and O.O. Babalola .2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology. 33: 197. https://doi.org/10.1007/s11274-017-2364-9
  • Spaepen ,S. and J. Vanderleyden .2011. Auxin and plant – microbe interactions. Cold Spring Harbor Perspectives Biology. 3:a001438. https://doi.org/10.1101%2Fcshperspect.a001438
  • Al-Khazali, S.R.KH. and Sh. Hamad. 2016.Influnce of auxin and polyamines on rooting of shoots of Citrus volkameriana rootstock in vitro. The Iraqi Journal of Agricultural Sciences .47(3): 732-737
  • Tang ,J. ; L Yukang  ; L. Zhang; J. Mu ; Y.Jiang ; H.Fu ; Y.Zhang ; H.  Cui  ; X. Yu and Z. Ye .2023. Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms. Microorganisms  . 11, 2077. https://doi.org/10.3390
  • Balzan,S.G.S.JohalandN.Carraro.2014.Theroleofauxintransportersinmonocotsdevelopment.Frontiers in Plant Science.5
  • Bertoni, G. 2011 . Indolebutyric acid-derived auxin and plant development. Plant
    Cell
    23. 845–845. doi: 1105/tpc.111.230312.
  • Fu S-F; J.Y. Wei ; H.W. Chen ; Y.Y. Liu ; H.Y. Lu and J.Y. Chou   .2015. Indole-
    3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signaling and Behavior. 10:e1048052. https://doi.org/10.1080/15592324.2015.1048052
  • Suliasih1 and S. Widawati . 2020. Isolation of Indole Acetic Acid (IAA) producing Bacillus siamensis from peat and optimization of the culture conditions for maximum IAA production. IOP Conf. Series: Earth and Environmental Science 572 . 012025 . doi:10.1088/1755-1315/572/1/012025.
  • Kumar, N.V.; S. Rajam and  E.Rani . 2017. Plant Growth Promotion Efficacy of Indole Acetic Acid (IAA) Produced by a Mangrove Associated Fungi-Trichoderma viride VKF3. International Journal of Current Microbiology and Applied Sciences . 6(11):   2692-2701. https://doi.org/10.20546/ijcmas.2017.611.317
  • Hamdan, A.Q. and F. Jomaa . 2020. Response of pomegranate " CV. WONDERFUL" transplants to mineral nutrition and gibberrelic acid. Iraqi Journal of Agricultural Sciences . 51(1):339-346
  • ChancludH , E and J.-B.   Morel . 2016. Plant hormones: a fungal point of view. Molecular   Plant   Pathology  . 17(8): 1289–1297. https://doi.org/10.1111%2Fmpp.12393
  • Bunsangiam S.; V. Sakpuntoon ; N. Srisuk ; T. Ohashi ;K. Fujiyama and S. Limtong   .2019. Biosynthetic pathway of indole-3-acetic acid in basidiomycetous yeast Rhodosporidiobolus fluvialis. Mycobiology 47:292–300. https://doi.org/10.1080/12298093.2019.1638672
  • Kumla, J.; N. Suwannarach ; K. Matsui and S. Lumyong S .2020. Biosynthetic pathway of indole-3-acetic acid in ectomycorrhizal fungi collected from northern Thailand. PLOS ONE. 15:e0227478. https://doi.org/10.1371%2Fjournal.pone.0227478
  • Reineke, G.; B. Heinze ; J. Schirawski ; H. Buettner ; R. Kahmann and C.W. Basse
    .2008. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Molecular Plant Pathology. 9: 339–355. https://doi.org/10.1111/j.1364-3703.2008.00470.x
  • Tsavkelova, E.; B. Oeser ; L. Oren-Young ; M. Israeli ; Y. Sasson ; B. Tudzynski and A. Sharon .2012. Identification and functional characterization of indole-3- acetamide-mediated IAA biosynthesis in plant-associated Fusarium species. Fungal Genetics and Biology. 49: 48–57. https://doi.org/10.1016/j.fgb.2011.10.005
  • Hasan, H. .2002. Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinitycalcium interaction. Acta Microbiologica et Immunologica Hungarica . 49:105-18. https://doi.org/10.1556/amicr.49.2002.1.11
  • Shao J. ;   Li ; N. Zhang X. Cui ;X. Zhou ; G. Zhang ;Q. Shen and R. Zhang R. 2015. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acet ic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb Cell Factories 14:130
  • Keswani, C.; H.B. Singh ; C. García-Estrada ; J. Caradus ; Y.W. He ; S. MezaacheAichour ; T.R. Glare ; R. Borriss and E. Sansinenea .2020. Auxins of microbial origin and their use in agriculture. Applied Microbiology and Biotechnology. 8549- 8565  . https://doi.org/10.1007/s00253-020-10890-8
  • Keswani, C.; H.B. Singh ; F. Vinale ; R. Hermosa ; C. García-Estrada ; J. Caradus
    ; Y.W. He ; S. Mezaache-Aichour ; T.R. Glare ;R. Borriss and E. Sansinenea .2019a. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Applied Microbiology and Biotechnology. 103:9287–9303. Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents | SpringerLink
  • Chanclud , E. and J.Morel .2016. Plant hormones: a fungal point of view. Molecular plant pathology . 17(8) , 1289–1297.
  • Qiao, L.L. ; Z. L.Y ; Sheng ; H.W. Zhao ; H.L. Jin  and D.D. Niu  . 2020. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. Plant J 102: 948–964. doi:10 .1111/tpj.14677
  • Sharaf, E.F. andA.A. Farrag .2004. Induced resistance in tomato plants by IAA
    against Fusarium oxysporum lycopersici. Polish journal of Microbiol 53: 111–116. Induced resistance in tomato plants by IAA against Fusarium oxysporum lycopersici - PubMed (nih.gov)
  • Rao, R.P.; A. Hunter ; O. Kashpur and J. Normanly.2010. Aberrant synthesis of indole-3-acetic acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi. Genetics. 185: 211–220. https://doi.org/10.1534/genetics.109.112854
  • Kulkarni, G.B.; S. Sanjeevkumar ; B. Kirankumar ; M. Santoshkumar and T.B. Karegoudar  .2013. Indole-3-acetic acid biosynthesis in Fusarium delphinoides strain GPK, a causal agent of wilt in chickpea. Applied Biochemistry and Biotechnology. 169: 1292–1305. https://doi.org/10.1007/s12010-012-0037-6
  • Glass, N.L. and Kosuge .1988. Role of indoleacetic acid lysine synthetase in regulation of indoleacetic-acid pool size and virulence of Pseudomonas-syringae subsp. savastanoi. Journal of Bacteriology. 170:2367–2373. https://doi.org/10.1128/jb.170.5.2367-2373.1988
  • Hirsch, A.M. and Y. Fang.1994. Plant hormones and nodulation: what’s the connection? Plant Molecular Biology . 26: 5–9. Plant hormones and nodulation: what's the connection? | SpringerLink
  • Datta, C. and P.S..Basu.2000. lndole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cojan. Microbiological Research. 155:123–127. https://doi.org/10.1016/s0944-5013(00)80047-6 .
  •  Liu, Y.P. ; L. Chen ; N. Zhang ; Z. Li ; G. Zhang ; Y. Xu ; Q. Shen and R. Zhang .2016a. Plant-microbe communication enhances auxin biosynthesis by a root-associated bacterium Bacillus amyloliquefaciens SQR9. Molecular Plant-Microbe Interactions . 29:324–330. https://doi.org/10.1094/mpmi-10-15-0239-r
  • Etemadi, M.; C. Gutjahr, ; J.M. Couzigou; M. Zouine; D. Lauressergues;A.Timmers; C. Audran; M.B. Bouzayen ;G. ecard and J.P. Combier.2014.
    Auxin perception is required for arbuscule development in arbuscular mycorrhizal
    Plant Physiology. 166: 281–292.

https://doi.org/10.1104/pp.114.246595

  • Radhakrishnan, R.; K.B. Shim ; B.W. Lee ;C.D. Hwang ; S.B. Pae ; C.H. Park ; S.U.
    Kim ; C.K. Lee and I.Y. Baek .2013. IAA-producing Penicillium sp. NICS01 triggers plant growth and suppresses Fusarium sp.-induced oxidative stress in sesame (Sesamum indicum). Microbiology and Biotechnology.23:856–863. https://doi.org/10.4014/jmb.1209.09045
  • Jogaiah, S. ; M. Abdelrahman ; L.S. Tran  and I. Shin-ichi   .2013. Characterization
    of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease .Journal of Experimental Botany. 64:3829–3842. https://doi.org/10.1093/jxb/ert212
  • Mukherjee, S. and S.K. Sen .2015. Exploration of novel rhizospheric yeast
    isolate as fertilizing soil inoculant for improvement of maize cultivation. Journal of the Science Food and Agriculture. 95:1491–1499. https://doi.org/10.1002/jsfa.6848
  • Ozimek, E.; J. Jaroszuk-Scisel ;J. Bohacz ; T. Kornillowicz-Kowalska ;R. Tyskiewicz; A. Slomka ;A. Nowak and A. Hanaka .2018. Synthesis of indoleacetic acid, gibberellic acid and ACC-deaminase by Mortierella strains promotea winter wheat seedlings growth under different conditions. International Journal of Molecular Science. 19:3218. https://doi.org/10.3390%2Fijms19103218
  • Gay, G., Normand, L., Marmeisse, R., Sotta, B. and Debaud, J.C. .1994. Auxin overproducer mutants of Hebeloma cylindrosporum Romagnesi have increased mycorrhizal activity. New Phytologist. 128: 645–657. https://doi.org/10.1111/j.1469-8137.1994.tb04029.x
  • Laurans, F.; R. Pepin and G.Gay  .2001. Fungal auxin overproduction affects the
    anatomy of Hebeloma cylindrosporum–Pinus pinaster ectomycorrhizas. Tree Physiology. 21:533–540. https://doi.org/10.1093/treephys/21.8.533
  • Cohen, B.A.; Z. Amsellem, ; R. Maor ; A. Sharon and  Gressel .  2002 . Transgenically enhanced expression of indole-3-acetic acid confers hypervirulence to
    plant pathogens. Phytopathology. 92: 590–596. https://doi.org/10.1094/phyto.2002.92.6.590
  • Maor, R..; S. Haskin ; H. Levi-kedmi and A.Sharon .2004. In planta production
    of indole-3-acetic acid by Colletotrichum gloeosporioides sp. aeschynomene.Applied and Environmental Microbiology. 70:3–6.https://doi.org/10.1128%2FAEM.70.3.1852-1854.2004
  • Yin, C.; J.J. Park ; D.R. Gang and S.H. Hulbert .2014. Characterization of a tryptophan 2-monooxygenase gene from Puccinia graminis sp. tritici involved in auxin biosynthesis and rust pathogenicity. Molecular plant-microbe interactions . 27: 227–235. https://doi.org/10.1094/mpmi-09-13-0289-fi
  • Mehmood,,A ; A. Hussain1; M. Irshad; M. Hamayun; A. Iqbal  and N. Khan. 2018. In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis. 77:  225–235.https://doi.org/10.1007/s13199-018-0583-y
  • Mehmood, A.; M. Irshad; N. Khan; M. Hamayun; I.Husna; A. Javed and A. Hussain. 2018. IAA Producing Endophytic Fungus Fusarium oxysporum wlw Colonize Maize
    Roots and Promoted Maize Growth Under Hydroponic Condition.   European Journal of Experimental Biology.8.o DOI: 10.21767/2248-9215.100065 Experimental

 

    • Article View: 580
    • PDF Download: 208
Kirkuk University Journal for Agricultural Sciences (KUJAS)
Volume 15, Issue 4 - Issue Serial Number 4
December 2024
Page 1-8
Files
  • XML
  • PDF 529.32 K
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
Statistics
  • Article View: 580
  • PDF Download: 208

APA

Abdul-karim, E., & Hussein, H. (2024). The Role of Auxins in Interactive Relationships between Plants and Pathogens. Kirkuk University Journal for Agricultural Sciences (KUJAS), 15(4), 1-8. doi: 10.58928/ku24.15401

MLA

Eman Khalil Abdul-karim; Halima Z Hussein. "The Role of Auxins in Interactive Relationships between Plants and Pathogens". Kirkuk University Journal for Agricultural Sciences (KUJAS), 15, 4, 2024, 1-8. doi: 10.58928/ku24.15401

HARVARD

Abdul-karim, E., Hussein, H. (2024). 'The Role of Auxins in Interactive Relationships between Plants and Pathogens', Kirkuk University Journal for Agricultural Sciences (KUJAS), 15(4), pp. 1-8. doi: 10.58928/ku24.15401

VANCOUVER

Abdul-karim, E., Hussein, H. The Role of Auxins in Interactive Relationships between Plants and Pathogens. Kirkuk University Journal for Agricultural Sciences (KUJAS), 2024; 15(4): 1-8. doi: 10.58928/ku24.15401

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Glossary
  • Sitemap

News

  • Kirkuk University Journal For Agricultural Sciences ... 2025-12-01
  • Kirkuk University Journal of Agricultural Sciences ... 2026-01-07

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com