• Register
  • Login

Kirkuk University Journal for Agricultural Sciences (KUJAS)

  1. Home
  2. Effect of cold storage on lipid and protein oxidation, microbial spoilage, and physicochemical properties of chicken meat

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

Related Links

About Journal

FAQ

News

Journal Metrics

Effect of cold storage on lipid and protein oxidation, microbial spoilage, and physicochemical properties of chicken meat

    Author

    • Fatima Abdulkhaliq Nooraldeen

    Department of Animal Resources, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan region, IRAQ.

,

Document Type : Research Paper

10.58928/ku25.16201
  • Article Information
  • References
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

Due to the low-fat content and its richness in fatty acids, especially the saturated ones, and lower cholesterol levels than mutton and beef, many consumers prefer broiler chicken meat. However, the refrigerated storage may lead to chemical alterations and microbial proliferation in the meat product, generating metabolites that induce physical and chemical quality changes in the chicken meat. Thus, the study focuses on chicken meat's oxidation of lipids and proteins, microbial degradation, and physicochemical attributes during refrigeration. The study involves 30 forty-two-day-old ROSS broiler chickens with an average live body weight of 2.023 ± 0.017 kg at a commercial plant in Erbil, Kurdistan region of northern Iraq. After bleeding and evisceration, chicken breast muscle samples were divided into three portions, then tagged, vacuum-sealed, and stored in a 4°C refrigerator for 1, 3, and 5 days. In this study, there were increased activities of microbes, including lactic acid bacteria, Enterobacteriaceae, pseudomonas species, and total aerobic counts (P≤0.05) as the days of ageing went up. The thiobarbituric acid reactive substances, carbonyl, and free thiol contents changed significantly as the meat ages for 1, 3, and 5 days. Similarly, the refrigerated storage of broiler chicken meat was significantly reduced the value of colour, muscle pH, WHC, drip loss, cooking loss, and heavy chains (actin and myosin). Improved refrigerated storage and meat ageing are vital to ensuring better meat quality, safety, and shelf life. 

Keywords

  • oxidation
  • microbial deterioration
  • meat quality
  • chicken meat
  • and refrigeration storage

Main Subjects

  • Animal Production
  • XML
  • PDF 1.09 M
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
References
  • Faostat, F. (2021). New food balances. FAOSTAT. Available via FAO. Accessed, 25.
  • Xu, N., Zeng, X., Li, L., Zhang, X., Wang, P., Han, M., & Xu, X. (2022). Effects of post-mortem aging process on characteristic water-soluble taste-active precursors in yellow-feathered broilers. Food Science and Human Wellness, 12(1), 242–253. https://doi.org/10.1016/j.fshw.2022.07.004.
  • Tsafrakidou, P., Sameli, N., Kakouri, A., Bosnea, L., & Samelis, J. (2023). Assessment of the Spoilage Microbiota and the Growth Potential of Listeria monocytogenes in Minced Free-Range Chicken Meat Stored at 4 °C in Vacuum: Comparison with the Spoilage Community of Resultant Retail Modified Atmosphere Packaged Products. Applied Microbiology, 3(4), 1277–1301. https://doi.org/10.3390/applmicrobiol3040088.
  • Katiyo, W., De Kock, H. L., Coorey, R., & Buys, E. M. (2020). Sensory implications of chicken meat spoilage in relation to microbial and physicochemical characteristics during refrigerated storage. LWT, 128, 109468. https://doi.org/10.1016/j.lwt.2020.109468.
  • Alexandrakis, D., Downey, G., & Scannell, A. G. M. (2009). Rapid Non-destructive Detection of Spoilage of Intact Chicken Breast Muscle Using Near-infrared and Fourier Transform Mid-infrared Spectroscopy and Multivariate Statistics. Food and Bioprocess Technology, 5(1), 338–347. https://doi.org/10.1007/s11947-009-0298-4.
  • Insausti, K., Beriain, M., Purroy, A., Alberti, P., Gorraiz, C., & Alzueta, M. (2001). Shelf life of beef from local Spanish cattle breeds stored under modified atmosphere. Meat Science, 57(3), 273–281. https://doi.org/10.1016/s0309-1740(00)00102-9.
  • Filho, D. V. C., Da Rocha, T. C., De Carvalho, J. M., De Carvalho, L. M., De Sousa Galvão, M., Pedrao, M. R., Estévez, M., & Madruga, M. S. (2023). Oxidative stability of white striping chicken breasts: effect of cold storage and heat treatments. Poultry Science, 102(8), 102826. https://doi.org/10.1016/j.psj.2023.102826.
  • Pereira, F. M., Da S Magalhães, T., De Freitas Júnior, J. E., Santos, S. A., Pinto, L. F., Pina, D. D. S., Mourão, G. B., Pires, A. J., Júnior, F. J. C., De C Mesquita, B. M., Alba, H. D., & De Carvalho, G. G. (2022). Qualitative profile of meat from lambs fed diets with different levels of chitosan. Part II. Livestock Science, 262, 104975. https://doi.org/10.1016/j.livsci.2022.104975.
  • Aziz, M. F. A., Hayat, M. N., Kaka, U., Kamarulzaman, N. H., & Sazili, A. Q. (2020). Physico-Chemical Characteristics and Microbiological Quality of Broiler Chicken Pectoralis Major Muscle Subjected to Different Storage Temperature and Duration. Foods, 9(6), 741. https://doi.org/10.3390/foods9060741.
  • Da Rocha, T. C., Filho, D. V. C., De Carvalho, L. M., De Carvalho, J. M., Estévez, M., & Madruga, M. S. (2022). Effect of refrigeration and freezing on the oxidative stability of WB chicken breast. LWT, 171, 114108. https://doi.org/10.1016/j.lwt.2022.114108.
  • Abubakar, A. A., Zulkifli, I., Goh, Y. M., Kaka, U., Sabow, A. B., Imlan, J. C., Awad, E. A., Othman, A. H., Raghazli, R., Mitin, H., & Sazili, A. Q. (2021). Effects of Stocking and Transport Conditions on Physicochemical Properties of Meat and Acute-Phase Proteins in Cattle. Foods, 10(2), 252. https://doi.org/10.3390/foods10020252.
  • Sabow, A. B., Sazili, A. Q., Aghwan, Z. A., Zulkifli, I., Goh, Y. M., Kadir, M. Z. a. A., Nakyinsige, K., Kaka, U., & Adeyemi, K. D. (2016). Changes of microbial spoilage, lipid-protein oxidation and physicochemical properties during post mortem refrigerated storage of goat meat. Animal Science Journal, 87(6), 816–826. https://doi.org/10.1111/asj.12496.
  • Morzel, M., Gatellier, P., Sayd, T., Renerre, M., & Laville, E. (2006). Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins. Meat Science, 73(3), 536–543. https://doi.org/10.1016/j.meatsci.2006.02.005.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Sabow, A., & Majeed, S. (2020). Bleeding Efficiency And Keeping Quality in Broiler Chicken Meat Subjected to Two Slaughtering Methods. The Journal of the University of Duhok, 22(2), 152–158. https://doi.org/10.26682/cajuod.2020.22.2.17.
  • Sazili, A., Parr, T., Sensky, P., Jones, S., Bardsley, R., & Buttery, P. (2005). The relationship between slow and fast myosin heavy chain content, calpastatin and meat tenderness in different ovine skeletal muscles. Meat Science, 69(1), 17–25. https://doi.org/10.1016/j.meatsci.2004.06.021..
  • Hayat, M. N., Kaka, U., & Sazili, A. Q. (2021). Assessment of Physicochemical Characteristics and Microbiological Quality in Broiler Chicken Breast Muscle (Pectoralis major) Subjected to Different Temperatures and Lengths of Cold Transportation. Foods, 10(4), 874. https://doi.org/10.3390/foods10040874.
  • [18] SAS (2007) User's Guide. 9.2 edn. SAS Inst. Inc, Cary, NC, . USA.

 

  • [19] Jouki, M., & Yazdi, F. T. (2014). The effect of gamma irradiation and vacuum packaging upon selected quality traits of refrigerated ostrich meat. Part 1. Microbial assessment. Animal Science Papers and Reports, 32(1), 81-89.
  • Sabow, A., & Majeed, S. (2019). Bleeding Efficiency And Keeping Quality in Broiler Chicken Meat Subjected to Two Slaughtering Methods. The Journal of the University of Duhok, 22(2), 152–158. https://doi.org/10.26682/cajuod.2020.22.2.17.
  • Thames, H. T., Fancher, C. A., Colvin, M. G., McAnally, M., Tucker, E., Zhang, L., Kiess, A. S., Dinh, T. T. N., & Sukumaran, A. T. (2022). Spoilage Bacteria Counts on Broiler Meat at Different Stages of Commercial Poultry Processing Plants That Use Peracetic Acid. Animals, 12(11), 1439. https://doi.org/10.3390/ani12111439.
  • Xiao, S., Zhang, W., Lee, E., Ma, C., & Ahn, D. (2013). Effects of diet, packaging, and irradiation on protein oxidation, lipid oxidation, and color of raw broiler thigh meat during refrigerated storage. Poultry Science, 90(6), 1348–1357. https://doi.org/10.3382/ps.2010-01244.
  • Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants, 8(10), 429. https://doi.org/10.3390/antiox8100429.
  • [24] Zhang, C., Li, Y., Xia, X., Sun, Q., Sun, F., & Kong, B. (2023). Changes in protein oxidation, structure, and thermal stability of chicken breast subjected to ultrasound-assisted immersion freezing during frozen storage. Food Chemistry, 398, 133874. https://doi.org/10.1016/j.foodchem.2022.133874.
  • [25] Horbańczuk, O. K., Wyrwisz, J., Marchewka, J., Ławiński, M., & Jóźwik, A. (2021). Lipid and protein oxidation in ostrich meat under various packaging types during refrigerated storage and in vitro gastrointestinal digestion. Animal Science Papers and Reports, 39(3), 251-259.
  • [26] Wang, X., Wang, Z., Zhuang, H., Nasiru, M. M., Yuan, Y., Zhang, J., & Yan, W. (2021). Changes in color, myoglobin, and lipid oxidation in beef patties treated by dielectric barrier discharge cold plasma during storage. Meat Science, 176, 108456. https://doi.org/10.1016/j.meatsci.2021.108456.
  • [27] Falowo, A. B., Fayemi, P. O., & Muchenje, V. (2014). Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International, 64, 171–181. https://doi.org/10.1016/j.foodres.2014.06.022.
  • [28] Thanatsang, K. V., Malila, Y., Arayamethakorn, S., Srimarut, Y., Tatiyaborworntham, N., Uengwetwanit, T., Panya, A., Rungrassamee, W., & Visessanguan, W. (2020). Nutritional Properties and Oxidative Indices of Broiler Breast Meat Affected by Wooden Breast Abnormality. Animals, 10(12), 2272. https://doi.org/10.3390/ani10122272.
  • [29] Ferreira, V. C. S., Morcuende, D., Madruga, M. S., Silva, F. a. P., & Estévez, M. (2018). Role of protein oxidation in the nutritional loss and texture changes in ready‐to‐eat chicken patties. International Journal of Food Science & Technology, 53(6), 1518– https://doi.org/10.1111/ijfs.13733.
  • [30] Smet, K., Raes, K., Huyghebaert, G., Haak, L., Arnouts, S., & De Smet, S. (2008). Lipid and Protein Oxidation of Broiler Meat as Influenced by Dietary Natural Antioxidant Supplementation. Poultry Science, 87(8), 1682–1688. https://doi.org/10.3382/ps.2007-00384.
  • [ Xue, M., Huang, F., Huang, M., & Zhou, G. (2012). Influence of oxidation on myofibrillar proteins degradation from bovine via μ-calpain. Food Chemistry, 134(1), 106–112. https://doi.org/10.1016/j.foodchem.2012.02.072.
  • Nakyinsige, K., Sazili, A., Aghwan, Z., Zulkifli, I., Goh, Y., Bakar, F. A., & Sarah, S. (2015). Development of microbial spoilage and lipid and protein oxidation in rabbit meat. Meat Science, 108, 125–131. https://doi.org/10.1016/j.meatsci.2015.05.029.
  • [33] Nieto, G., Jongberg, S., Andersen, M. L., & Skibsted, L. H. (2013). Thiol oxidation and protein cross-link formation during chill storage of pork patties added essential oil of oregano, rosemary, or garlic. Meat Science, 95(2), 177–184. https://doi.org/10.1016/j.meatsci.2013.05.016.
  • [34] Ooizumi, T., & Xiong, Y. L. (2004). Biochemical Susceptibility of Myosin in Chicken Myofibrils Subjected to Hydroxyl Radical Oxidizing Systems. Journal of Agricultural and Food Chemistry, 52(13), 4303–4307. https://doi.org/10.1021/jf035521v.
  • [35] Domínguez, R., Pateiro, M., Munekata, P. E. S., Zhang, W., Garcia-Oliveira, P., Carpena, M., Prieto, M. A., Bohrer, B., & Lorenzo, J. M. (2021a). Protein Oxidation in Muscle Foods: A Comprehensive Review. Antioxidants, 11(1), 60. https://doi.org/10.3390/antiox11010060.
  • [35] Kim, Y. A., Van Ba, H., & Hwang, I. (2019). Effects of Traditional Sauce Type and Storage Time on Quality Characteristics, Shelf-life and Flavor Compounds of Marinated Pork Cooked by Sous Vide Method. Food Science of Animal Resources, 39(3), 355–370. https://doi.org/10.5851/kosfa.2019.e27.
  • Morzel, M., Gatellier, P., Sayd, T., Renerre, M., & Laville, E. (2006). Chemical oxidation decreases proteolytic susceptibility of skeletal muscle myofibrillar proteins. Meat Science, 73(3), 536–543. https://doi.org/10.1016/j.meatsci.2006.02.005.
  • [37] Kim, H., Kim, H., Jeon, J., Nam, K., Shim, K., Jung, J., Kim, K. S., Choi, Y., Kim, S., & Jang, A. (2020). Comparison of the quality characteristics of chicken breast meat from conventional and animal welfare farms under refrigerated storage. Poultry Science, 99(3), 1788–1796. https://doi.org/10.1016/j.psj.2019.12.009.
  • [38] Rahman, M. M. (2020). Effect of deboning time, ageing period and collagen characteristics on horse Semimembranosus meat quality.
  • [ Ahokpossi, A. G. A. C., Bonou, A. G., Tona, K., Karim, I. Y. A., & Ameyapoh, Y. (2023). Influence of age at slaughter and sex on carcass characteristics and technological and sensory quality of Goliath chicken meat. Veterinary World, 194–203. https://doi.org/10.14202/vetworld.2023.194-203.
  • Kaboshio, K., Gandi, B., Zakka, C., & Musa, J. (2020, October 15). Effect of post-stunning bleeding time on physical, sensory and microbial status of rabbit meat. https://www.ajol.info/index.php/tjas/article/view/200566.
  • [Soglia, F., Zeng, Z., Gao, J., Puolanne, E., Cavani, C., Petracci, M., & Ertbjerg, P. (2018). Evolution of proteolytic indicators during storage of broiler wooden breast meat. Poultry Science, 97(4), 1448–1455. https://doi.org/10.3382/ps/pex398.
  • [42] Li, X., Ha, M., Warner, R. D., & Dunshea, F. R. (2021). Meta-analysis of the relationship between collagen characteristics and meat tenderness. Meat Science, 185, 108717. https://doi.org/10.1016/j.meatsci.2021.108717.
  • [43] Matarneh, S. K., Scheffler, T. L., & Gerrard, D. E. (2023). The conversion of muscle to meat. In Elsevier eBooks (pp. 159–194). https://doi.org/10.1016/b978-0-323-85408-5.00010-8.
  • Li, S., Xu, X., & Zhou, G. (2012). The roles of the actin-myosin interaction and proteolysis in tenderization during the aging of chicken muscle. Poultry Science, 91(1), 150–160. https://doi.org/10.3382/ps.2011-01484.
  • Kim, H., Yan, F., Hu, J., Cheng, H., & Kim, Y. (2016). Effects of probiotics feeding on meat quality of chicken breast during postmortem storage. Poultry Science, 95(6), 1457–1464. https://doi.org/10.3382/ps/pew055.
  • Oliveira, R.F.D., Mello, J.L.M.D., Ferrari, F.B., Souza, R.A.D., Pereira, M.R., Cavalcanti, E.N.F., Villegas-Cayllahua, E.A., Fidelis, H.D.A., Giampietro-Ganeco, A., Fávero, M.S. And Souza, P.A.D. (2021). Effect of aging on the quality of breast meat from broilers affected by wooden breast myopathy. Animals, 11(7), 1960.
  • Shi, H., Shahidi, F., Wang, J., Huang, Y., Zou, Y., Xu, W., & Wang, D. (2021). Techniques for postmortem tenderiation in meat processing: effectiveness, application and possible mechanisms. Food Production Processing and Nutrition, 3(1). https://doi.org/10.1186/s43014-021-00062-0.
  • Bhat, Z., Morton, J. D., Mason, S. L., & Bekhit, A. E. A. (2018). Role of calpain system in meat tenderness: A review. Food Science and Human Wellness, 7(3), 196–204. https://doi.org/10.1016/j.fshw.2018.08.002.
  • Hou, X., Liang, R., Mao, Y., Zhang, Y., Niu, L., Wang, R., Liu, C., Liu, Y., & Luo, X. (2014). Effect of suspension method and aging time on meat quality of Chinese fattened cattle M. Longissimus dorsi. Meat Science, 96(1), 640–645. https://doi.org/10.1016/j.meatsci.2013.08.026.
  • Lindahl, G. (2011). Colour stability of steaks from large beef cuts aged under vacuum or high oxygen modified atmosphere. Meat Science, 87(4), 428–435. https://doi.org/10.1016/j.meatsci.2010.10.023.
  • [51] Dimitrov, N., Miteva, D., Dimov, K., Petkov, E., & Popova, T. (2023). Changes in Colour and Myoglobin Oxidation in Chicken Meat as Affected by Antioxidants during Storage. Proceedings of the Bulgarian Academy of Sciences, 76(12). https://doi.org/10.7546/crabs.2023.12.18.
  • [52] Filgueras, R., Gatellier, P., Aubry, L., Thomas, A., Bauchart, D., Durand, D., Zambiazi, R., & Santé-Lhoutellier, V. (2010). Colour, lipid and protein stability of Rhea americana meat during air- and vacuum-packaged storage: Influence of muscle on oxidative processes. Meat Science, 86(3), 665–673. https://doi.org/10.1016/j.meatsci.2010.06.003.
  • Salwani, Adeyemi, K., Sarah, S., Vejayan, J., Zulkifli, I., & Sazili, A. (2016). Skeletal muscle proteome and meat quality of broiler chickens subjected to gas stunning prior slaughter or slaughtered without stunning. CyTA - Journal of Food, 1–7. https://doi.org/10.1080/19476337.2015.1112838.
  • Saláková, A., Straková, E., Válková, V., Buchtová, H., & Steinhauserová, I. (2009). Quality Indicators of Chicken Broiler Raw and Cooked Meat Depending on Their Sex. Acta Veterinaria Brno, 78(3), 497–504. https://doi.org/10.2754/avb200978030497.
  • Mir, N. A., Rafiq, A., Kumar, F., Singh, V., & Shukla, V. (2017). Determinants of broiler chicken meat quality and factors affecting them: a review. Journal of Food Science and Technology, 54(10), 2997–3009. https://doi.org/10.1007/s13197-017-2789-z.

King, D. A., Hunt, M. C., Barbut, S., Claus, J. R., Cornforth, D. P., Joseph, P., Kim, Y. H. B., Lindahl, G., Mancini, R. A., Nair, M. N., Merok, K. J., Milkowski, A., Mohan, A., Pohlman, F., Ramanathan, R., Raines, C. R., Seyfert, M., Sørheim, O., Suman, S. P., & Weber, M. (2022). American Meat Science Association Guidelines for Meat Color Measurement. Meat and Muscle Biology, 6(4). https://doi.org/10.22175/mmb.12473. 

    • Article View: 325
    • PDF Download: 343
Kirkuk University Journal for Agricultural Sciences (KUJAS)
Volume 16, Issue 2 - Issue Serial Number 2
June 2025
Page 1-10
Files
  • XML
  • PDF 1.09 M
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
Statistics
  • Article View: 325
  • PDF Download: 343

APA

Nooraldeen, F. (2025). Effect of cold storage on lipid and protein oxidation, microbial spoilage, and physicochemical properties of chicken meat. Kirkuk University Journal for Agricultural Sciences (KUJAS), 16(2), 1-10. doi: 10.58928/ku25.16201

MLA

Fatima Abdulkhaliq Nooraldeen. "Effect of cold storage on lipid and protein oxidation, microbial spoilage, and physicochemical properties of chicken meat". Kirkuk University Journal for Agricultural Sciences (KUJAS), 16, 2, 2025, 1-10. doi: 10.58928/ku25.16201

HARVARD

Nooraldeen, F. (2025). 'Effect of cold storage on lipid and protein oxidation, microbial spoilage, and physicochemical properties of chicken meat', Kirkuk University Journal for Agricultural Sciences (KUJAS), 16(2), pp. 1-10. doi: 10.58928/ku25.16201

VANCOUVER

Nooraldeen, F. Effect of cold storage on lipid and protein oxidation, microbial spoilage, and physicochemical properties of chicken meat. Kirkuk University Journal for Agricultural Sciences (KUJAS), 2025; 16(2): 1-10. doi: 10.58928/ku25.16201

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Glossary
  • Sitemap

News

  • Kirkuk University Journal For Agricultural Sciences ... 2025-12-01
  • Kirkuk University Journal of Agricultural Sciences ... 2026-01-07

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com