• Register
  • Login

Kirkuk University Journal for Agricultural Sciences (KUJAS)

  1. Home
  2. Land Use Change and Its Implications for Drought Dynamics in Sulaymaniyah Governorate between 2013-2022 .

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

Related Links

About Journal

FAQ

News

Journal Metrics

Land Use Change and Its Implications for Drought Dynamics in Sulaymaniyah Governorate between 2013-2022 .

    Authors

    • Falah Fama Faraj Ali 1
    • Ahmad Majeed Muhammad Daloye 2
    • Salim Neimat Azeez 3

    1 1Surveying Department, Darbandikhan Technical Institute, Sulaimani Polytechnic University, Sulaimani, KGR, Iraq,

    2 Surveying Department, Kalar Technical Institute, Garmian Polytechnic University,KGR, Iraq

    3 Protected Cultivation Department, Bakrajo Technical Institute, Sulaimani Polytechnic University, Sulaimani, KGR, IRAQ

,

Document Type : Research Paper

10.58928/ku25.16203
  • Article Information
  • References
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

Drought is a significant phenomenon associated with climate change, impacting various sectors. Effective planning is essential to mitigate its effects and minimize potential damage. Remote sensing data and GIS-based spatial analysis were employed to assess drought conditions. This study focuses on Sulaymaniyah Province, located in northeastern Iraq, covering an area of 21,240 km². Geographically, the province lies between longitudes 44°49'59" E and 45°59'43" E, and latitudes 34°21'07" N and 36°15'48" N. The study utilized Landsat 8 OLI satellite data to derive two key spectral indices: The Normalized Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI). These indices were analyzed using ArcGIS 10.4.1 to assess drought conditions and their spatial distribution across the region. Maps highlighting NDVI and NDWI values were created to evaluate the drought impacts for the years 2013, 2017, 2021, and 2022.The findings indicate a clear spatial variation in drought severity across the province. NDVI analysis from 2013 to 2022 shows notable vegetation cover fluctuations, with low vegetation increasing from 43.7% to 66.5% in 2021 and dense vegetation peaking at 11.9% in 2017 before declining sharply. NDWI analysis indicates a rise in extremely drought-affected areas from 17.4% to 34.8%, while no-drought zones decreased from 0.6% to 0.1%. These findings reflect increasing water stress and environmental changes in Sulaymaniyah Governorate. Vegetation density declined after 2017, and drought severity worsened. NDI increased from 0.42 in 2013 to 0.53 in 2022, indicating a growing disparity between plant health and water availability suggesting worsening drought conditions in Sulaymaniyah Governorate.

Keywords

  • Drought
  • Sulaimanya
  • NDVI
  • NDWI
  • GIS

Main Subjects

  • Soil science and water resources
  • XML
  • PDF 1.4 M
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
References
  • Rhee, J.; Im, J. and Carbone, G.J. 2010, Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-Sensor Remote Sensing Data. Remote Sens. Environ, 114, 2875-2887.   
  • Mohammed, F. O., Mohammad, A. O., Ibrahim, H. S., & Hasan, R. A. (2021). Future Scenario of Global Climate Map Change according to the Köppen-Geiger Climate Classification. Baghdad Science Journal, 18(2 (Suppl.)), 1030–1030.
  • Hirche, A.; Salamani, M.; Abdellaoui, A.; Benhouhou, S. and Valderrama, J.M. 2011, Landscape Changes of Desertification in Arid Areas: The Case of South-West Algeria." Environ Monitoring Assess 179, 403-420.
  • [Ali, D.A.; Abdulrahman, N.M. and Rahem, B.R. 2023, Some Heavy Metals Status and Water quality parameters of Darbandikhan Dam, Sirwan and Tanjaro rivers. Kirkuk University Journal for Agricultural Sciences, 14, 131-150.
  • Jasim, A. I., & Awchi, T. A. (2020). Regional meteorological drought assessment in Iraq. Arabian Journal of Geosciences, 13(7), 284.
  • Hedres, I.H.; Khalaf, A.A. and Shihab, M.R. 2022, Using of SEBAL model for estimating net solar radiation and land surface temperature in the Dyala River Basin. Kirkuk University Journal for Agricultural Sciences, 13,48-61.
  • Amalo L.F.; Hidayat, R. and Sulma, S. 2018, Analysis of agricultural drought using vegetation health index. Journal of Agricultural Science, 40, 63-73.
  • Hamed, M. M., Sammen, S. S., Nashwan, M. S., & Shahid, S. (2023). Spatiotemporal variation of drought in Iraq for shared socioeconomic pathways. Stochastic Environmental Research and Risk Assessment, 37(4), 1321–1331.
  • Tucker, C.J. 1979, Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ, 8, 127-150.
  • Peters, A.J.; Elizabeth, A.; Walther-Shea, L.J.; Vina, A.; Hayes, M. and Svoboda, M.D. 2002, Drought Monitoring with NDVI-Based Standardized Vegetation Index. Photogrammetric Engineering & Remote Sensing, 68, 71-75.
  • McFeeters, S.K. 1996, The use of the normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sensing 17, 1425-1432.
  • Gao, B.C. 1996, NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ, 58, 257-266.
  • Zhang, N.; Hong, Y.; Qin, Q. and Zhu, L. 2013, Evaluation of the visible and shortwave infrared drought index in China Int. J. Disaster Risk Sci. 4, 68-76.
  • Ali, K.D. 2024, Geospatial Technique Applications in Groundwater Investigation. Kirkuk University Journal for Agricultural Sciences, 15, 91-97.
  • Younis, M.S. and Moustafa, S.M. 2018, Biodiversity Mix Natural Forest Distribution in Qara Mountain Region. Kirkuk University Journal for Agricultural Sciences, 9, 107-116.
  • Yang, Y.; Wu, T.; Wang, S.; Li, J. and Muhanmmad, F. 2019, The NDVI-CV Method for Mapping Evergreen Trees in Complex Urban Areas using Reconstructed LANDSAT 8 Time-Series Data. Forests, 10, 139-149.
  • Mishra, A.K.; Ines, A.V.; Das, N.N.; Khedun, C.P.; Singh, V.P,.; Sivakumar, B. and Hansen, J.W. 2015, Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study. Journal of Hydrology. 526, 15-29.
  • Najmaddin, P.M.; Whelan, M.J. and Balzter, H. 2017, Estimating daily reference evapotranspiration in a semi-arid region using remote sensing data, Remote Sensing, 779, 1-20.
  • Al-Quraishi, A. M. F., Qader, S. H., & Wu, W. (2019). Drought monitoring using spectral and meteorological based indices combination: A case study in Sulaimaniyah, Kurdistan region of Iraq. In Environmental remote sensing and GIS in Iraq (pp. 377–393). Springer. https://link.springer.com/chapter/10.1007/978-3-030-21344-2_15
  • Pirotti, F.; Parraga, M.A.; Stuaro, E.; Dubbini, M.; Masiero, A. and Ramanzin, M. 2014, NDVI from Landsat 8 Vegetation Indices to Study Movement Dynamics of Capra ibex in Mountain Areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40, 147-153.
  • Spadoni, G.L.; Cavalli, A.; Congedo, L. and Munafo, M. 2020, Analysis of Normalized Difference Vegetation Index (NDVI) Multi-Temporal Series for the Production of Forest Cartography. Remote Sens. Appl. Soc. Environ. 20, 20-33.
  • Andana, E.K. 2015, Pengembangan Data CitraSatelit Landsat 8 Untuk Pemetaan Area Tanaman Hortikultura Dengan Berbagai Metode Algoritma Indeks Vegetasi (Studi Kasus: Kabupaten Malang Dan Sekitarnya). Nas. Manaj. Teknol, 9, 1-10.
  • Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S. and Li, D. 2020, A Review of Vegetation Phenological Metrics Extraction Using Time-Series, Multispectral Satellite Data. Remote Sens. Environ, 237, 1-47.
  • Sánchez-Ruiz, S.; Piles, M.; Sánchez, N.; Martínez-Fernández, J.; Vall-llossera, M. and Camps, A. 2014, Combining SMOS with Visible and Near/Shortwave/Thermal Infrared Satellite Data for High Resolution Soil Moisture Estimates. J. Hydrol. 516, 273-283.
  • Ceccato, P.; Flasse, S.; Tarantola, S.; Jacquemoud, S. and Grégoire, J.M. 2001, Detecting Vegetation Leaf Water Content Using Reflectance in the Optical Domain. Remote Sens. Environ,77, 22-
    • Article View: 216
    • PDF Download: 182
Kirkuk University Journal for Agricultural Sciences (KUJAS)
Volume 16, Issue 2 - Issue Serial Number 2
June 2025
Page 19-25
Files
  • XML
  • PDF 1.4 M
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
Statistics
  • Article View: 216
  • PDF Download: 182

APA

Ali, F., Daloye, A. M., & Azeez, S. (2025). Land Use Change and Its Implications for Drought Dynamics in Sulaymaniyah Governorate between 2013-2022 .. Kirkuk University Journal for Agricultural Sciences (KUJAS), 16(2), 19-25. doi: 10.58928/ku25.16203

MLA

Falah Fama Faraj Ali; Ahmad Majeed Muhammad Daloye; Salim Neimat Azeez. "Land Use Change and Its Implications for Drought Dynamics in Sulaymaniyah Governorate between 2013-2022 .". Kirkuk University Journal for Agricultural Sciences (KUJAS), 16, 2, 2025, 19-25. doi: 10.58928/ku25.16203

HARVARD

Ali, F., Daloye, A. M., Azeez, S. (2025). 'Land Use Change and Its Implications for Drought Dynamics in Sulaymaniyah Governorate between 2013-2022 .', Kirkuk University Journal for Agricultural Sciences (KUJAS), 16(2), pp. 19-25. doi: 10.58928/ku25.16203

VANCOUVER

Ali, F., Daloye, A. M., Azeez, S. Land Use Change and Its Implications for Drought Dynamics in Sulaymaniyah Governorate between 2013-2022 .. Kirkuk University Journal for Agricultural Sciences (KUJAS), 2025; 16(2): 19-25. doi: 10.58928/ku25.16203

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Glossary
  • Sitemap

News

  • Kirkuk University Journal For Agricultural Sciences ... 2025-12-01
  • Kirkuk University Journal of Agricultural Sciences ... 2026-01-07

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com