• Register
  • Login

Kirkuk University Journal for Agricultural Sciences (KUJAS)

  1. Home
  2. Smart Irrigation Systems: A Comprehensive Review of IoT, AI, and Sustainable Agriculture Technologies. A Review Article

Current Issue

By Issue

By Author

By Subject

Author Index

Keyword Index

Related Links

About Journal

FAQ

News

Journal Metrics

Smart Irrigation Systems: A Comprehensive Review of IoT, AI, and Sustainable Agriculture Technologies. A Review Article

    Authors

    • Naz Mohammed 1
    • Hussain Thahir Tahir 2
    • Skala Salam Othman 3
    • Dalya Aydeen Hawar 4
    • Murad Abdullah Abdulkadir 5
    • Cem Korkmaz 6

    1 Kirkuk University - college of Agriculture

    2 Department of Agricultural machinery and Equipment, College of Agriculture, Kirkuk University, Kirkuk, IRAQ.

    3 Agricultural machinery and Equipment,College of Agriculture, Kirkuk University,IRAQ

    4 College of Medicinal & Industrial Plants, Kirkuk University, IRAQ

    5 Department of Therapeutic Nutrition Techniques, College of Health and Medical Techniques, Kirkuk, Northern Technical University, IRAQ.

    6 Department of Agricultural Machinery and Technology Engineering, Çukurova University Faculty of Agriculture, Adana, TÜRKİYE

,

Document Type : Review Paper

10.58928/ku25.16429
  • Article Information
  • References
  • Download
  • Export Citation
  • Statistics
  • Share

Abstract

ABSTRACT
      Smart irrigation systems have become essential for mitigating water scarcity, climate variability, and rising energy costs in modern agriculture. This review synthesizes recent advances in multi-source sensing, IoT/LPWAN connectivity, and hybrid edge–cloud AI frameworks that enable real-time irrigation and fertigation optimisation. A PRISMA-based methodology was applied to over 150 studies, focusing on high-impact contributions from 2017–2025. Results show that AI- and sensor-driven scheduling commonly reduces water use by 15–40% while maintaining or improving yield and nutrient-use efficiency across open-field, orchard, and greenhouse systems. Machine-learning models (RF, XGB, LSTM, CNN–LSTM, Transformer) and control strategies (MPC, RL, fuzzy logic) significantly enhance ET estimation, soil-moisture forecasting, anomaly detection, and automated valve control. Commercial platforms such as Netafim NetBeat®, Rivulis Manna, Jain AquaSphere, Rain Bird IQ4, and Toro IntelliDash demonstrate scalable field deployment, integrating IoT diagnostics, hydraulic monitoring, and interoperable APIs. Key barriers include sensor drift, connectivity limitations, proprietary architectures, and the limited explainability of deep-learning models. Future directions emphasize interoperable data standards, trustworthy and uncertainty-aware AI, self-calibrating sensing systems, high-fidelity digital twins, and energy-autonomous edge hardware. Collectively, these innovations position smart irrigation as a core enabler of climate-resilient, resource-efficient agricultural water management.

Keywords

  • Smart irrigation
  • Precision irrigation
  • IoT and LPWAN connectivity
  • Model predictive control
  • LSTM-based forecasting
  • Fertigation management
  • Digital twin and explainable AI

Main Subjects

  • Soil science and water resources
  • XML
  • PDF 984.09 K
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
References
  • (2025). Crop evapotranspiration – Guidelines for computing crop water requirements. Second edition, revised 2025. FAO Irrigation and Drainage Paper 56 Rev.1. Rome: FAO. Available at: https://openknowledge.fao.org/items/6c5c4d35-ba04-4cb5-8e78-95e9bb59922f
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements (FAO Irrigation and Drainage Paper 56). FAO, Rome. https://www.fao.org/4/x0490e/x0490e00.htm
  • Obaideen, K., Yousef, B. A., AlMallahi, M. N., Tan, Y. C., Mahmoud, M., Jaber, H., & Ramadan, M. (2022). An overview of smart irrigation systems using IoT. Energy Nexus, 7, 100124. https://doi.org/10.1016/j.nexus.2022.100124
  • Vallejo-Gómez, D., Osorio, M., & Hincapié, C. A. (2023). Smart irrigation systems in agriculture: A systematic review. Agronomy, 13(2), 342. https://doi.org/10.3390/agronomy13020342
  • Abioye, E. A., Hensel, O., Esau, T. J., Elijah, O., et al. (2022). Precision irrigation management using machine learning and digital farming solutions. AgriEngineering, 4(1), 70–103. https://doi.org/10.3390/agriengineering4010006
  • Younes, A., et al. (2024). The application of machine learning techniques for smart irrigation systems: A systematic review. Smart Agricultural Technology, 7, 100425. https://doi.org/10.1016/j.atech.2024.100425
  • Colizzi, L., Dimauro, G., Guerriero, E., & Lomonte, N. (2025). Artificial Intelligence and IoT for Water Saving in Agriculture: A Systematic Review. Smart Agricultural Technology, 101008. https://doi.org/10.1016/j.atech.2025.101008
  • Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming – A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023
  • Tsouros, D. C., Bibi, S., & Sarigiannidis, P. (2019). A review on UAV-based applications for precision agriculture. Information, 10(11), 349. https://doi.org/10.3390/info10110349
  • Datta, S., & Taghvaeian, S. (2023). Soil water sensors for irrigation scheduling in the United States: A systematic review of literature. Agricultural Water Management, 278, 108148. https://doi.org/10.1016/j.agwat.2023.108148
  • García, L., Parra, L., Jimenez, J. M., Lloret, J., et al. (2020). IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors, 20(4), 1042. https://doi.org/10.3390/s20041042
  • Tantalaki, N., Souravlas, S, & Roumeliotis, M. (2019). Data-driven decision making in precision agriculture: The rise of big data in agricultural systems. Journal of Agricultural & Food Information, 20(4), 344–380. https://doi.org/10.1080/10496505.2019.1638264
  • Abdelmoneim, A. A., Kimaita, H. N., Al Kalaany, C. M., Derardja, B., Dragonetti, G., & Khadra, R. (2025). IoT sensing for advanced irrigation management: A systematic review of trends, challenges, and future prospects. Sensors (Basel, Switzerland), 25(7), 2291. https://doi.org/10.3390/s25072291
  • Sharma, A., Jain, A., Gupta, P., & Chowdary, V. (2020). Machine learning applications for precision agriculture: A comprehensive review. IEEE Access, 9, 4843-4873. doi: 10.1109/ACCESS.2020.3048415.
  • Rejeb, A., Rejeb, K., & Hassoun, A. (2025). The impact of machine learning applications in agricultural supply chain: a topic modeling-based review. Discover Food, 5(1), 141. https://doi.org/10.1007/s44187-025-00419-1
  • Wang, Q., Jia, Y., Pang, Z., Zhou, J., Scriber II, K. E., Liang, B., & Chen, Z. (2024). Intelligent fertigation improves tomato yield and quality and water and nutrient use efficiency in solar greenhouse production. Agricultural Water Management, 298, 108873. https://doi.org/10.1016/j.agwat.2024.108873
  • Bao, L., et al. (2023). Intelligent drip fertigation increases water and nutrient use efficiency and yield of greenhouse watermelon. Agricultural Water Management, 282, 108038. https://doi.org/10.1016/j.agwat.2023.108278
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372. https://doi.org/10.1136/bmj.n71
  • Pereira, L. S., Allen, R. G., et al. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural Water Management, 147, 4–20. https://doi.org/10.1016/j.agwat.2014.07.031
  • Považanová, B., Čistý, M., & Bajtek, Z. (2023). Using feature engineering and machine learning in FAO reference evapotranspiration estimation. Journal of Hydrology and Hydromechanics, 71(4), 425-438. https://doi.org/10.2478/johh-2023-0032
  • erformance Evaluation of Low-Cost Soil Moisture Sensors in Irrigated Orchard. Agriculture, 14(8), 1239. https://doi.org/10.3390/agriculture14081239
  • Kumar, V. S., Singh, C. D., Rao, K. V. R., et al. (2023). Evaluation of IoT based smart drip irrigation and ETc based system for sweet corn. Smart Agricultural Technology, 5, 100248. https://doi.org/10.1016/j.atech.2023.100248
  • Liu, L., Qi, D., Ding, C., Chen, S., Gao, L., & Yue, W. (2025). Optimization of Irrigation and Nitrogen Fertilization Improves Biomass, Yield, and Quality of Fertigation Tomatoes. Horticulturae, 11(5), 521. https://doi.org/10.3390/horticulturae11050521
  • Agyeman, B. T., Naouri, M., Appels, W., Liu, J., & Shah, S. L. (2023). Integrating machine learning paradigms and mixed-integer model predictive control for irrigation scheduling. arXiv preprint arXiv:2306.08715. https://doi.org/10.48550/arXiv.2306.08715
  • Pagano, A., Croce, D., Tinnirello, I., & Vitale, G. (2022). A survey on LoRa for smart agriculture: Current trends and future perspectives. IEEE Internet of Things Journal, 10(4), 3664-3679. https://doi.org/1109/JIOT.2022.3230505
  • Al-Sarawi, S., Anbar, M., Alieyan, K., & Alzubaidi, M. (2017, May). Internet of Things (IoT) communication protocols. In 2017 8th International conference on information technology (ICIT) (pp. 685-690). IEEE. https://doi.org/10.1109/ICITECH.2017.8079928
  • He, Q., et al. (2024). Edge computing-oriented frameworks for smart agriculture supply chains. Journal of Cloud Computing, 13, 62. https://doi.org/10.1186/s13677-024-00626-8
  • Jamroen, C., et al. (2020). An intelligent irrigation scheduling system using low-cost Wireless Sensor Network toward sustainable precision and agriculture. IEEE Access, 8, 172756–172769. https://doi.org/10.1109/ACCESS.2020.3025590
  • Singh, A. K., et al. (2025). A comprehensive review of recent advances in intelligent controller development for smart irrigation systems. https://doi.org/10.1007/s10791-025-09762-4
  • Del-Coco, M., Leo, M., & Carcagnì, P. (2024). Machine learning for smart irrigation in agriculture: How far along are we?. Information, 15(6), 306. https://doi.org/10.3390/15060306
  • Zhang, R., et al. (2025). A comprehensive review of digital twin technology in agriculture. Agriculture, 15(1), 22. https://doi.org/10.3390/agriculture15090903
  • Chauhan, D., Bahad, P., & Jain, R. (2025). Digital Twins-enabled model for Smart Farming. In Digital Twins for Smart Cities and Villages(pp. 465-487). Elsevier. https://doi.org/10.1016/B978-0-443-28884-5.00020-8
  • Cosh, M. H., et al. (2005). Calibration of an impedance probe for estimation of surface soil water content over large regions. Journal of Hydrology, 311(1-4), 49-58. https://doi.org/10.1016/j.jhydrol.2005.01.003
  • Carella, A., et. al. (2024). Continuous plant-based and remote sensing for determination of fruit tree water status. Horticulturae, 10(5), 516. https://doi.org/10.3390/horticulturae10050516
  • Conlon, T., Small, C., & Modi, V. (2022). A multiscale spatiotemporal approach for smallholder irrigation detection. Frontiers in Remote Sensing, 3, 871942. https://doi.org/10.3389/frsen.2022.871942
  • Cheng, Y., et al. (2023). Effects of drip fertigation on yield, water and nitrogen use efficiency and quality of vegetables and fruits. Journal of Plant Nutrition and Fertilizers, 29(9), 1677–1688. https://doi.org/11674/zwyf.2023048
  • Bwambale, E., et al. (2023). Data-driven model predictive control for precision irrigation management. Smart Agricultural Technology, 3, 100074. https://doi.org/10.1016/j.atech.2022.100074
  • Rorabaugh, D., et al. (2019). SOMOSPIE: A modular soil moisture spatial inference engine based on data-driven decisions. In 2019 15th International Conference on eScience (eScience) (pp. 1-10). IEEE. https://doi.org/10.1109/eScience.2019.00008
  • Abed, M., et al. (2022). A novel application of transformer neural network (TNN) for estimating pan evaporation rate. Applied Water Science, 13(2), 31. https://doi.org/10.1007/s13201-022-01834-w
  • (2020). Netafim enhances its digital farming solution with Sentek soil sensor integration. Available at: https://www.businesswire.com/news/home/20200701005310/en/
  • (2020). Netafim integrates Arable Labs’ sensing & analysis technology into NetBeat. Available at: https://www.netafim.com/en/news-and-events/news/netafim-integrates-arable-labs-sensing-and-analysis-technology-into-netbeat/
  • (n.d.). Manna Irrigation Intelligence. Available at: https://www.rivulis.com/irrigation-intelligence/
  • Jain Irrigation Systems Ltd. (n.d.). Jain AquaSphere – Smart irrigation and fertigation platform. Corporate documentation.
  • Rain Bird Corporation. (n.d.). IQ4 Central Control. Available at: https://www.rainbird.com/usa/iq4-main
  • The Toro Company. (n.d.). IntelliDash. Available at: https://golfdashboard.toro.com/
  • Parvathi, Rajkumar Jhapte, M. Sucharitha, Soorya M. Nair, V. T. Krishnaprasath (2024). Digital Twins for an Irrigation System. In Handbook of Industrial and Business Applications with Digital Twins (pp. 267-281). CRC Press.
  • Tomašev, N., et al. (2020). AI for social good: unlocking the opportunity for positive impact. Nature Communications, 11(1), 2468. https://doi.org/10.1038/s41467-020-15871-z
  • Lawal, Y. (2025). AI and IoT-Based Smart Irrigation: A Review of Challenges and Future Trends. International Congresses of Turkish Science and Technology Publishing, 770-776.
  • Hamdoon, W., & Zengin, A. (2023). A New IoT-Based Smart Irrigation Management System. Middle East Journal of Science, 9(1), 42-56. https://doi.org/10.51477/mejs.1142136
  • Vij, A., et al. (2020). IoT and machine learning approaches for automation of farm irrigation system. Procedia Computer Science, 167, 1250-1257. https://doi.org/10.1016/j.procs.2020.03.440
  • Tahiri, A. Z., Carmi, G., & Ünlü, M. (2020). Promising water management strategies for arid and semiarid environments. In Landscape Architecture-Processes and Practices Towards Sustainable Development. IntechOpen. https://doi.org/10.5772/intechopen.87103
  • Aroba, O. J., & Rudolph, M. (2024). Systematic literature review on the application of precision agriculture using artificial intelligence by small-scale farmers in Africa and its societal impact. Journal of Infrastructure, Policy and Development, 8(13), 8872. https://doi.org/10.24294/jipd8872
  • Neugebauer, M., et al. (2023). Fuzzy logic control for watering system. Scientific Reports, 13(1), 18485. https://doi.org/10.1038/s41598-023-45203-2
  • Camacho, E. F., & Bordons, C. (2007). Constrained model predictive control. In Model predictive control(pp. 177-216). London: Springer London.
  • How Can ICT Be Applied to Support Sustainable Agriculture? (2025). SocietyByte blog article. https://www.societybyte.swiss/en/2025/02/27/how-can-ict-be-applied-to-support-sustainable-agriculture/
  • Sharma, V., Kaur, G., Chhabra, V., & Kashyap, R. (2025). Smart irrigation systems in agriculture: An overview. Computers and Electronics in Agriculture, 239, 111008. https://doi.org/10.1016/j.compag.2025.111008
  • Jovicich, E., et al. (2003). Reduced fertigation of soilless greenhouse peppers improves fruit yield and quality. In International Symposium on Managing Greenhouse Crops in Saline Environment 609 (pp. 193-196). https://doi.org/ 10.17660/ActaHortic.2003.609.26
  • Ali, A., Hussain, T., & Zahid, A. (2025). Smart irrigation technologies and prospects for enhancing water use efficiency for sustainable agriculture. AgriEngineering, 7(4), 106. https://doi.org/10.3390/agriengineering7040106
  • Singh, C. D., et al. (2024). IoT-based smart drip irrigation scheduling and wireless monitoring of microclimate in sweet corn crop under plastic mulching. Irrigation Science, 43(5), 1107-1126. https://doi.org/10.1007/s00271-024-00945-3
  • Benameur, R., et al. (2024). An innovative smart and sustainable low-cost irrigation system for anomaly detection using deep learning. Sensors, 24(4), 1162. https://doi.org/10.3390/s24041162
  • Lakhiar, I. A., et al. (2024). A review of precision irrigation water-saving technology under changing climate for enhancing water use efficiency, crop yield, and environmental footprints. Agriculture, 14(7), 1141. https://doi.org/10.3390/agriculture14071141
  • Wang, L., et al. (2024). Digital twins in agriculture: A review of recent progress and open issues. Electronics, 13(11), 2209. https://doi.org/10.3390/electronics13112209
  • Dholu, M., & Ghodinde, K. A. (2018, May). Internet of things (IoT) for precision agriculture application. In 2018 2nd International conference on trends in electronics and informatics (ICOEI) (pp. 339-342). IEEE. https://doi.org/ 10.1109/ICOEI.2018.8553720
  • Chen, Z., Zhu, Z., Jiang, H., & Sun, S. (2020). Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. Journal of Hydrology, 591, 125286. https://doi.org/10.1016/j.jhydrol.2020.125286
  • Thorp, K. R. (2022). pyfao56: FAO-56 evapotranspiration in Python. SoftwareX, 19, 101208. https://doi.org/10.1016/j.softx.2022.101208
  • Li, W., et al. (2020). Review of sensor network‐based irrigation systems using IoT and remote sensing. Advances in meteorology, 2020(1), 8396164. https://doi.org/10.1155/2020/8396164
  • Gupta, G., & Kumar Pal, S. (2025). Applications of AI in precision agriculture. Discover Agriculture, 3(1), 61. https://doi.org/10.1007/s44279-025-00220-9
  • Majdalawieh, M., et al. (2025). Precision Agriculture in the Age of AI: A Systematic Review of Machine Learning Methods for Crop Disease Detection. Smart Agricultural Technology, 101491. https://doi.org/10.1016/j.atech.2025.101491
  • Touil, S., et al. (2022). A review on smart irrigation management strategies and their effect on water savings and crop yield. Irrigation and Drainage, 71(5), 1396-1416. https://doi.org/10.1002/ird.2735
  • Nawaz, M., & Babar, M. I. K. (2025). IoT and AI for smart agriculture in resource-constrained environments: challenges, opportunities and solutions. Discover internet of things, 5(1), 24. https://doi.org/10.1007/s43926-025-00119-3

 

    • Article View: 61
    • PDF Download: 70
Kirkuk University Journal for Agricultural Sciences (KUJAS)
Volume 16, Issue 4 - Issue Serial Number 4
December 2025
Page 266-281
Files
  • XML
  • PDF 984.09 K
Share
Export Citation
  • RIS
  • EndNote
  • Mendeley
  • BibTeX
  • APA
  • MLA
  • HARVARD
  • VANCOUVER
Statistics
  • Article View: 61
  • PDF Download: 70

APA

Mohammed, N., Tahir, H., Othman, S. S., Hawar, D., Abdulkadir, M., & Korkmaz, C. (2025). Smart Irrigation Systems: A Comprehensive Review of IoT, AI, and Sustainable Agriculture Technologies. A Review Article. Kirkuk University Journal for Agricultural Sciences (KUJAS), 16(4), 266-281. doi: 10.58928/ku25.16429

MLA

Naz Mohammed; Hussain Thahir Tahir; Skala Salam Othman; Dalya Aydeen Hawar; Murad Abdullah Abdulkadir; Cem Korkmaz. "Smart Irrigation Systems: A Comprehensive Review of IoT, AI, and Sustainable Agriculture Technologies. A Review Article". Kirkuk University Journal for Agricultural Sciences (KUJAS), 16, 4, 2025, 266-281. doi: 10.58928/ku25.16429

HARVARD

Mohammed, N., Tahir, H., Othman, S. S., Hawar, D., Abdulkadir, M., Korkmaz, C. (2025). 'Smart Irrigation Systems: A Comprehensive Review of IoT, AI, and Sustainable Agriculture Technologies. A Review Article', Kirkuk University Journal for Agricultural Sciences (KUJAS), 16(4), pp. 266-281. doi: 10.58928/ku25.16429

VANCOUVER

Mohammed, N., Tahir, H., Othman, S. S., Hawar, D., Abdulkadir, M., Korkmaz, C. Smart Irrigation Systems: A Comprehensive Review of IoT, AI, and Sustainable Agriculture Technologies. A Review Article. Kirkuk University Journal for Agricultural Sciences (KUJAS), 2025; 16(4): 266-281. doi: 10.58928/ku25.16429

  • Home
  • About Journal
  • Editorial Board
  • Submit Manuscript
  • Contact Us
  • Glossary
  • Sitemap

News

  • Kirkuk University Journal For Agricultural Sciences ... 2025-12-01
  • Kirkuk University Journal of Agricultural Sciences ... 2026-01-07

Newsletter Subscription

Subscribe to the journal newsletter and receive the latest news and updates

© Journal Management System. Powered by iJournalPro.com